Effect of Prior Treatment with Proteasome Inhibitors on the Efficacy and Safety of Once-Weekly Selinexor, **Bortezomib, and Dexamethasone in Comparison** with Twice-Weekly Bortezomib and Dexamethasone in Relapsed or Refractory Multiple Myeloma: **Subgroup Analysis from the BOSTON Study**

Maria V Mateos¹, Maria Gavriatopoulou², Thierry Facon³, Holger Auner⁴, Xavier Leleu⁵, Roman Hájek⁶, Meletios A. Dimopoulos⁷, Sosana Delimpasi⁸, Maryana Simonova⁹, Ivan Špička¹⁰, Luděk Pour¹¹, Iryna Kriachok¹², Halyna Pylypenko¹³, Vadim Doronin¹⁴, Ganna Usenko¹⁵, Reuben Benjamin¹⁶, Tuphan K Dolai¹⁷, Dinesh K Sinha¹⁸, Christopher Venner¹⁹, Mamta Garg²⁰, Don A Stevens²¹, Hang Quach²², Sundar Jagannath²³, Philippe Moreau²⁴, Moshe Levy²⁵, Ashraf Z. Badros²⁶, Larry A. Anderson²⁷, Nizar J Bahlis²⁸, Dr Michele Cavo²⁹, Yi Chai³⁰, Melina Arazy³⁰, Jatin Shah³⁰, Sharon Shacham³⁰, Michael G Kauffman³⁰, Paul G Richardson³¹, Sebastian Grosicki³²

¹Hospital Universitario de Salamanca, Salamanca, Spain; ²Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; ³CHU Lille Service des Maladies du Sang F-59000, Lille, France; ⁴Imperial College London, London, UK; ⁵Department of Hematology, CHU la Miletrie and Inserm CIC 1402, Poitiers, France; ⁶University Hospital Ostrava, Department of Hematooncology, Ostrava Czech Republic; ⁷National and Kapodistrian University of Athens, Athens Greece; ⁹Institute of Blood Pathology and Transfusion Medicine of NAMS of Ukraine, Lviv Ukraine; ¹⁰Charles University and General Hospital, Prague, Czech Republic; ¹¹University Hospital Brno, Brno, Czech Republic; ¹²National Cancer Institute, Kiev, Ukraine; ¹³Cherkassy Regional Oncological Center, Cherkassy, Ukraine; ¹⁴City Clinical Hospital #40, Moscow, Russian Federation; ¹⁵City Clinical Hospital No.4 of Dnipro City Council, Dnipro Ukraine; ¹⁶Kings College Hospital NHS Foundation Trust, London, UK; ¹⁷Nil Ratan Sircar Medical College and Hospital, Kolkata, India; ¹⁸State Cancer Institute, Indira Gandhi Institute of Medical Sciences, Patna, India; ¹⁹Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; ²⁰University Hospitals of Leicester NHS Trust, Leicester UK; ²¹Norton Cancer Institute, St. Matthews Campus, Louisville, KY; ²²University of Melbourne, St Vincent's Hospital, Melbourne, Victoria Australia; ²³Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; ²⁴University Hospital, Hotel-Dieu, Nantes, France; ²⁵Baylor University Medical Center, Dallas, TX; ²⁶University of Maryland, Greenebaum Comprehensive Cancer Center, Baltimore, MD; ²⁷Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX; ²⁸University of Calgary, Charbonneau Cancer Institute, Boston, MA; ³²Medical University of Silesian, Katowice, Poland

Conflict of Interest Disclosure

Research Support	
Consultant	
Honoraria	Janssen, Celgene, Amgen, Takeda, Abbvie, GSK, Adaptive, Oncopeptides
Scientific Advisory Board	Janssen, Celgene, Amgen, Takeda, Abbvie, GSK, Pfizer, Regeneron, Adaptive, Oncopeptides, Roche, Seattle Genetics
Major Stockholder	
Employee, Speakers Bureau	

Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export¹⁻⁷ Demonstrates synergistic activity in combination with bortezomib *in vitro* and *in vivo*

1. Gupta A, et al. Therapeutic targeting of nuclear export inhibition in lung cancer. J Thorac Oncol. 2017;12(9):1446-1450. 2. Sun Q, et al. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther. 2016;1:16010. 3. Gandhi UH, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2018;18(5):335-345. 4. Gravina GL, et al. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7:85. 5. Turner, Oncotarget 2016, 6. Bahlis, Blood 2018, 7. Jakubowiak, BJH 2019

- **Exportin 1 (XPO1)** is overexpressed in MM and its levels correlate with poor prognosis and drug resistance
- XPO1 Overexpression Causes:
 - Tumor suppressor proteins (e.g., p53, IkB and FOXO) and glucocorticoid receptor <u>inactivation</u> and <u>enhanced</u> oncoprotein (e.g., c-Myc, Bcl-xL, cyclins) translation
- Selinexor (S) is an oral selective XPO1 inhibitor that reactivates multiple TSPs and inhibits oncoprotein translation
- Selinexor synergizes with proteasome inhibitors (PIs):
 - In PI-sensitive and -resistant cell lines and demonstrates synergy and overcomes resistance *in vitro* and *in vivo*

BOSTON Study Trial Design

BOSTON Trial: Phase 3, Global, Randomized, Open Label, Controlled Study in Patients with MM who had Received 1–3 Prior Therapies

Stratifications:

Prior PI therapies (Yes vs No); Number of prior anti-MM regimens (1 vs >1); R-ISS stage at study entry (Stage III vs Stage I/II) 5HT-3 prophylactic recommended in SVd arm

CR= complete response, DoR = duration of response, IMWG = International Myeloma Working Group, IRC = Independent Review Committee, OS = overall survival, PD = progressive disease, PFS = progression free survival, PR = partial response, PN = peripheral neuropathy, sCR = stringent complete response, TTNT = time to next therapy, VGPR = very good partial response. PFS defined as: Time from date of randomization until the first date of progressive disease, per IMWG response criteria, or death due to any cause, whichever occurred first, as assessed by IRC. ORR: Any response ≥PR (ie, PR, VGPR, CR, or sCR) based on the IRC's response outcome assessments, according to IMWG response criteria (Kumar et al. Lancet oncology 2016). All changes in MM disease assessments were based on baseline MM disease assessments. *Vd weekly dosing and schedule for cycles≥ 9 as per SVd arm description.

Overall Efficacy Results SVd vs. Vd

	SVd	Vd
PFS, median Hazard Ratio; (p value)	13.93 months 0.70 (<i>p=0.0075</i>)	9.46 months
ORR	76.6%	62.3%
≥VGPR	44.6%	32.4%
DOR	20.3 months	12.9 months

Methods

Conducted post-hoc analyses of the BOSTON study to determine the efficacy and safety among patients with prior proteasome inhibitor (PI) treatment

Total Patients Enrolled	SVd Arm (n=195)	Vd Arm (n=207)
Prior PI Treatment	SVd Prior PI – 76% (n=148)	Vd Prior PI – 77% (n=159)
PI Naïve	SVd PI Naïve – 24% (n=47)	Vd PI Naïve – 23% (n=48)

Baseline and Disease Characteristics by Prior PI Treatment Status

PI Treatment Category	SVd – Prior Pl (n=148)	SVd – PI Naïve (n=47)	Vd – Prior Pl (n=159)	Vd – PI Naïve (n=48)
Median Age, Years (range)	65 (40, 84)	68 (45 <i>,</i> 87)	67 (38, 90)	68 (44, 84)
Males, n (%)	89 (60.1)	26 (55.3)	88 (54.5)	27 (56.3)
Females, n (%)	59 (39.9)	21 (44.7)	71 (44.7)	21 (43.8)
Number of Prior Treatment Regimens, n (%) 1 2 3	70 (47.3) 50 (33.8) 28 (18.9)	29 (51.5) 15 (31.9) 3 (6.4)	74 (46.5) 50 (31.4) 35 (22.0)	25 (52.1) 14 (29.2) 9 (18.8)
Prior ASCT	63 (42.6)	13 (27.7)	53 (33.3)	10 (20.8)
Prior Treatment Exposure, n(%) Bortezomib Carfilzomib Ixazomib Daratumumab Lenalidomide	134 (90.5) 20 (13.5) 6 (4.1) 11 (7.4) 59 (39.9) 10 (6.8)	 18 (38.3) 1 (2.1)	145 (91.2) 21 (13.2) 3 (1.9) 5 (3.1) 60 (37.7) 52 (22.2)	 1 (2.1) 17 (35.4)

Related Adverse Events, All Grades, ≥10% Overall

	Prior PI Treatment Categories					
	SVd – Prior Pl (n=148)	SVd – PI Naïve (n=47)	Vd – Prior Pl (n=156)	Vd – PI Naïve (n=48)		
Thrombocytopenia	85 (57.4)	25 (53.2)	38 (24.4)	9 (18.8)		
Neuropathy Peripheral	47 (31.8)	14 (29.8)	67 (42.9)	26 (54.2)		
Nausea	69 (46.6)	24 (51.1)	10 (6.4)	2 (4.2)		
Fatigue	56 (37.8)	13 (27.7)	10 (6.4)	9 (18.8)		
Decreased Appetite	45 (30.4)	18 (38.3)	5 (3.2)	2 (4.2)		
Diarrhea	26 (17.6)	11 (23.4)	21 (13.5)	8 (16.7)		
Anemia	28 (18.9)	15 (31.9)	11 (7.1)	6 (12.5)		
Insomnia	22 (14.9)	7 (14.9)	20 (12.8)	7 (14.6)		
Asthenia	30 (20.3)	8 (17.0)	8 (5.1)	3 (6.3)		
Weight Decreased	29 (19.6)	9 (19.1)	7 (4.5)	1 (2.1)		
Constipation	14 (9.5)	4 (8.5)	17 (10.9)	7 (14.6)		
Vomiting	23 (15.5)	11 (23.4)	5 (3.2)			
Cataract	22 (14.9)	10 (21.3)	2 (1.3)	2 (4.2)		

AEs of ≥grade 3 occurred in 71% of patients in the PI naïve subgroup (SVd 77%, Vd 65%) and 74% of patients in the prior PI treatment subgroup (SVd 88%, Vd 60%). Thrombocytopenia was more frequent in patients in the SVd arms as was anemia and fatigue. Rate of grade ≥2 peripheral neuropathy was less frequent in the SVd than Vd treatment arms (PI naïve: 25.5%, Vd 43.8%, p=0.03; prior PI: SVd 19.6%, Vd 31.4%, p=0.009).

SVd is Effective (PFS, ORR) in Patients with Prior PI Treatment or PI Naïve

- PFS was prolonged in both PI groups with SVd compared to Vd. In prior PI, PFS was 11.7 vs 9.4 months (HR, 0.78; [95% CI, 0.58-1.06]; p=0.057) and in PI naïve, PFS was not reached vs 9.7 months (HR, 0.26; [95% CI, 0.11-0.60]; p=0.0003).
- The ≥VGPR rate was 41.9% in patients on SVd versus 29.6% on Vd (p=0.012) and 53.2% on SVd versus 41.7% on Vd (p=0.131) in the prior PI and PI naïve groups, respectively.

SVd is Effective Among Patients that Received Bortezomib Prior to ASCT as Induction Therapy – PFS, ORR

 Number at risk

PFS for Bort-Treated Prior to ASCT

Conclusions

- Patients who only had bortezomib based induction regimen prior to ASCT had a benefit with SVd
 PFS improvement of 13.1 vs 9.4 months; HR 0.58, (p=0.06)
- Among patients who were PI treated or PI naïve, SVd improved PFS relative to Vd
 - PI Treated PFS; 11.7 months vs 9.4 months; HR 0.78, (p=0.057)
 - PI Naïve PFS; Not Reached vs 9.7 months; HR 0.26, (p=0.0003)
- ORR was significantly improved with SVd in patients with prior PI therapy (77.0% vs 59.7%; p=0.0006)
- Non-PN AEs were higher with in SVd than Vd therapy, but most of the AEs were reversible and treatable.

Once weekly SVd is a active, convenient regimen and may be an important treatment option for patients with relapsed myeloma who had a bortezomib based induction or those who were PI naïve.