

Frontline Selinexor and Chemotherapy Is Highly Active in Older Adults with Acute Myeloid Leukemia (AML)

Timothy S. Pardee, MD, PhD¹, Kristin M. Pladna, M.S.^{2*}, Susan Lyerly, P.A.⁴ C.^{2*}, Sarah Dralle^{2*}, Megan Manuel, NP^{2*}, Leslie Renee Ellis, MD, MSHPEd², Dianna S. Howard, MD², Rupali Bhave, M.D.^{2*} and Bayard L. Powell, MD²

Conflicts of Interest

- Co-Chief Medical Officer of Rafael Pharmaceuticals
- Speaker/Consultant for (in the last 2 years):
 - Celgene/BMS
 - Amgen
 - Pharmacyclics/Janssen
 - AbbVie
- Advisory Board Member for:
 - CBM Biopharma
- Research Support From
 - Karyopharm
 - Rafael Pharmaceuticals
 - Spherix Intellectual Property

Acute Myeloid Leukemia (AML) Background

- An aggressive, abnormal proliferation of immature myeloid cells (myeloblasts) that fail to differentiate
- Leads to progressive marrow failure and death
- Median age at diagnosis is 68 (disease of older patients)
- An estimated 21,450 new cases in 2019 in the US
- Associated mortality is high with an estimated 10,920 deaths in 2019 in the US
- 28.3% of patients surviving at 5 years (2009-2015)

AML Prognosis, Age

AML and Outcome by Age

5 yr OS for all comers: 6.6%!!!!!!!

- Median Age at Diagnosis is 68
- 70% of all AML patients are >60
- Outcomes are dismal
- Resistance to standard therapy is common

Farag SS, et.al. *Blood* 2006; 108(1):63-73

Selinexor: Novel, First-in-Class, Small Molecule, Selective Inhibitor of Nuclear Export (SINE) XPO1

- Oral drug given 1-2 times per week (PDn t_{1/2} ~48 hrs)
- No known drug-drug interactions
 - None through CYP450s or other enzymes
 - No effect on QTc intervals
- Forms a covalent adduct at cysteine 528 (C528) in the XPO1 cargo binding pocket
- Inhibits XPO1-mediated nuclear export of TSPs and oncogenic mRNAs resulting in G1/G2 arrest and apoptosis
- Potent anti-myeloma, lymphoma and leukemia effects in preclinical models
- Preclinical evidence of therapeutic window between cancer cells and normal cells
- Has been shown to sensitize AML cells to anthracylines
- Phase I/II studies have been done in Frontline and RR AML

Inclusion Criteria

- Key Inclusion Criteria
 - Patients must have histologically or cytologically documented newly diagnosed de novo Acute Myeloid Leukemia (non-APL) that has not yet been treated. Hydrea is acceptable.
 - Patients must not have a secondary AML (defined as a history of prior radiation therapy or systemic chemotherapy, antecedent MDS, MPN or CMML)
 - Hydroxyurea may be used to control leukocytosis, provided that it is without Grade >2 toxicity, and can be taken until start of therapy.
 - Age >60 years.

Study Design

Study Design

	Arm 1: S.O.C.	Arm 2: Selinexor
(up to 4 cycles)	Remission bone ma Day 28-4	arrow biopsy 42
Day 1-3: Hig ≤ 70 years: 1 > 70 years: 1	gh dose Cytarabine .5 g/m²/day g/m²/day	Day 1-6: High dose Cytarabine \leq 70 years: 1.5 g/m ² /day > 70 years: 1 g/m ² /day
		Days 1 and 3: Twice weekly selinexor 60 mg for weeks 1-3
Continues until unacceptable toxicity or recurrence		or Maintenance therapy
		Once weekly (Days 1 and 8) selinexor 60 mg or highest tolerated dose every 3 weeks until relapse or unacceptable toxicity

Demographics

	Cohort	All (n=28)	Standard Arm (n=7)	Selinexor Arm (n=21)	
<	Median Age (range)	69 (60-75)	74 (60-75)	67 (61-73)	
<	Male	12/28	0/7	12/21	
	ELN 2017 Cytogenetic Risk				
	Poor	32% (9/28)	43% (3/7)	29% (6/21)	
	Intermediate	39% (11/28)	14% (1/7)	48% (10/21)	
<	Good	24% (7/28)	43% (3/7)	19% (4/21)	
	Unknown	4% (1/28)	0% (0/7)	5% (1/21)	

Mutational Data

	Cohort	All (n=28)	Standard Arm (n=7)	Selinexor Arm (n=21)	
	DNMT3A	25% (7/28)	43% (3/7)	19% (4/21)	
	NPM1	25% (7/28)	43% (3/7)	19% (4/21)	
	SRSF2	21% (6/28)	14% (1/7)	24% (5/21)	
	TET2	21% (6/28)	43% (3/7)	14% (3/21)	
<	ÁSXL1	18% (5/28)	0% (0/7)	24% (5/21)	
	IDH1	14% (4/28)	14% (1/7)	14% (3/21)	
	RUNX1	14% (4/28)	14% (1/7)	14% (3/21)	
	NRAS	11% (3/28)	14% (1/7)	10% (2/21)	
\sim	WT1	11% (3/28)	43% (3/7)	0% (0/21)	
	TP53	4% (1/28)	0% (0/7)	5% (1/21)	

Toxicity

- 60 day mortality 10% (2/21) selinexor arm, 14% (1/7) in SOC arm
- 33% (7/21) patients in selinexor arm with prolonged thrombocytopenia (>4 weeks following neutrophil recovery, transfusion dependent in 1)
- Diarrhea most common AE resulting in dose holding, dose modifications

Efficacy

Cohort	All (n=28)	Standard Arm (n=7)	Selinexor Arm (n=21)
Residual Disease on Nadir Marrow	19% (5/27)	50% (3/6)	10% (2/21)
Complete Remission (CR)	68% (19/28)	43% (3/7)	76% (16/21)
MRD Negative CR	81% (13/16)	NA	81% (13/16)
Overall Response (CR+CRi)	75% (21/28)	43% (3/7)	86% (18/21)
No CR/CRi	26% (7/28)	57% (4/7)	14% (3/21)
Went on to Transplant	29% (8/28)	14% (1/7)	33% (7/21)
Relapsed After CR	24% (5/21)	33% (1/3)	22% (4/18)

Survival

Selinexor Median OS= 839 Days

p = 0.0472

Progression Free Survival

Progression Free Survival

Control Median PFS= 108 Days Selinexor Median PFS= 558 Days p=0.1319

Cytarabine Exposure Induces Oxygen Consumption in AML

Pardee et. al. Clin Ca Res. 2018 May 1;24(9):2060-2073

OCR=Oxygen Consumption Rate

OCR is a Source of Resistance to Cytarabine In Vitro

PDH K.O. Cytarabine Titration 300 OCR (pmoles/min) 120-Rosa KO 100-PDH KO 200 80 % Viable 100 60-40. 20--100 0 ROSPERO R05450 R058 15 POHYO POHSO PDH^{TS} 25 50 100 0 Cytarabine (nM) Condition

Pardee et. al. Clin Ca Res. 2018 May 1;24(9):2060-2073

OCR=Oxygen Consumption Rate

Selinexor Blocks Increased OCR

OCR=Oxygen Consumption Rate

Selinexor Sensitizes AML to Ara-C

Summary

- Selinexor in combination with 7+3 appears highly active in fit elderly patients
- Selinexor provided a significant survival benefit in this small randomized trial
- Toxicities appeared manageable with similar 60 day mortality
- Fixed 60 mg dose is deserving of additional study in a larger randomized trial
- Selinexor may impair nuclear/mitochondrial communication needed for resistance to cytarabine

Acknowledgements

Pardee Lab:

- Kristi Stadelman
- Rebecca Anderson
- Enzo Palma
- Natty Schramm

Funding:

- Comprehensive Cancer Center of Wake Forest Baptist Health
- Karyopharm

The patients who have enrolled on our studies!

