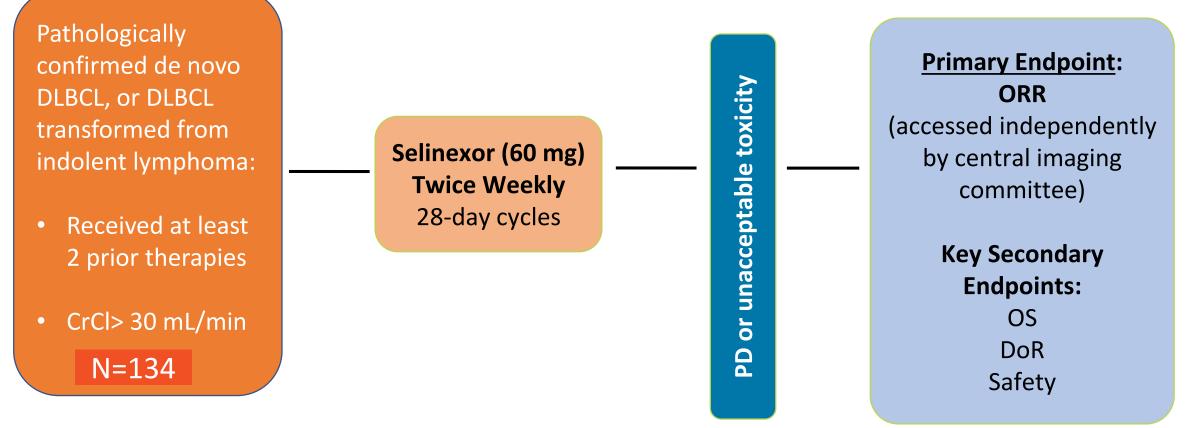

Selinexor Efficacy and Safety are Independent of Renal Function in Patients with **Relapsed/Refractory Diffuse Large B-Cell** Lymphoma (DLBCL): Subset Analysis from **Pivotal Phase 2b SADAL Study**

Jason Westin³, Michael Schuster¹, Miguel A. Canales², Josee Zijlstra⁴, George Follows⁵, Reem Karmali⁶, Nagesh Kalakonda⁷, Andre Goy⁸, Rene-Oliver Casasnovas⁹, Joost S.P. Vermaat¹⁰, Eric Van den Neste¹¹, Sylvian Choquet¹², Catherine Thieblemont¹³, Federica Cavallo¹⁴, Fatima De La Cruz Vincete¹⁵, Brian T. Hill¹⁶, Herve Tilly¹⁷, Shireen Kassam¹⁸, Reda Bouabdallah¹⁹, Ulrich Jaeger²⁰, Ronit Gurion²¹, Paolo Caimi²², Peter Martin²³, Andrew Davies²⁴, Sonali Smith²⁵, Graham Collins²⁶, Fritz Offner²⁷, Gilles Salles²⁸, Xiwen Ma²⁹ Kelly Corona²⁹, Jean-Richard Saint-Martin²⁹, Anita Joshi²⁹, Kamal Chamoun²⁹, Hongwei Wang²⁹, Jatin Shah²⁹, Sharon Shacham²⁹, Michael Kauffman²⁹, Marie Maerevoet³⁰
³University of Texas MD Anderson Cancer Center, Houston, TX, ¹Stony Brook University, Stony Brook, New York, United States, ²Hospital Universitario La Paz, Madrid, Spain, ⁴Amsterdam UMC, Vrije Universitei, Cancer Center, Amsterdam, Netherlands on behalf of the Lunenburg Lymphoma Phase I/II Consortium – HOVON /LLPC, ⁵Addenbrooke's Hospital, Cambridge, United Kingdom, ⁶Northwestern Medical Faculty Foundation Division Hematology Oncology, Chicago LL, ⁷University of Liverpool, Liverpool, United Kingdom, ⁸John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, United States, ⁹Hematologie Clinique and INSERM 1231, ICHU Dijon, Dijon, France & Diderot University of the Paris, France, ¹⁰Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy, ¹⁵Hospital University of Southampton, Que, Paria France, ¹⁶King's College Hospital, London, UK, ¹⁹Institut Paol-Calmettes, Marseille, France, ²⁰Medical University of Torino, Turin, Italy, ¹⁵Hospital University of Southampton, OK, Petah Tigwa, and TA University, Israel, ²²UH Cleveland Medical Center, Cleveland, Oki, Vi, NY, ²⁴Cancere Research UK/NIHR Experimental Cancer Medicienes Centre, Unive

Conflict of Interest Disclosure

Research Support	47 inc, AstraZeneca, BMS, Curis, Genentech, Janssen, Kite, Morphosys, Novartis, Unum
Consultant	
Honoraria	
Scientific Advisory Board	AstraZeneca, BMS, Genentech, Janssen, Kite, Morphosys, Novartis
Major Stockholder	
Employee, Speakers Bureau	

Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export and Reactivates Tumor Suppressor Proteins


- Selinexor selectively binds and inactivates exportin 1 (XPO1)
 - Forcing the nuclear retention and reactivation of cell cycle regulators such as p53, FOXO, IkB, and Rb
 - **Reducing oncoproteins** known to play critical roles in NHL (c-Myc, Bcl2, Bcl6, BclXL)
 - XPO1 overexpression in DLBCL correlates with poor prognosis
 - Selinexor in combination with dexamethasone (Sd) has been approved by the FDA for patients with relapsed / refractory multiple myeloma.

Selinexor, oral, single agent, is approved by the FDA for the treatment of patients with relapsed or refractory DLBCL, de novo or transformed from follicular lymphoma after ≥2 prior therapies

SADAL Trial Design

SADAL Trial: The SADAL (Selinexor Against Diffuse Aggressive Lymphoma) study was a multi-center, openlabel Phase 2b study which enrolled patients with previously treated, pathologically confirmed de novo DLBCL, or DLBCL transformed from previously diagnosed indolent lymphoma, and having received at least

2 prior therapies.

SADAL Overall Efficacy Results

	Response per IRC ^a , (n=134)	Median DOR per IRC, months (95% CI) ^c (n=39)
Overall Response Rate (ORR) ^b , (95% CI)	39 (29.0) (22.0 <i>,</i> 38.0)	9.3 (4.9 <i>,</i> NE)
Complete Response (CR), n (%)	18 (13.0)	23.0 (10.4, NE)
Partial Response (PR), n (%)	21 (15.7)	4.4 (1.9, NE)
Stable Disease (SD), n (%)	11 (8.2)	
Progressive Disease (PD) / Not Evaluable (NE), n (%)	84 (62.7)	

Median time to PR or better: 8.1 weeks (range: 6.7 – 16.4)

a. Responses were adjudicated according to the Lugano 2014 Criteria (Cheson BD, et al. J Clin Oncol. 2014;32(27):3059-3068. doi: 10.1200/JCO.2013.54.8800) by an Independent Radiologic Committee (IRC) and confirmed by an Independent Oncologist Reviewer. The Deauville criteria (a 5-point scale) was used to grade response using PET-CT. PET-CT results were prioritized over CT results.

b. Includes CR + PR.

c. Median follow up 11.1 months

XPOVIO® [package insert]. Cambridge, MA: Karyopharm Therapeutics, Inc.; 2020; Unpublished data.

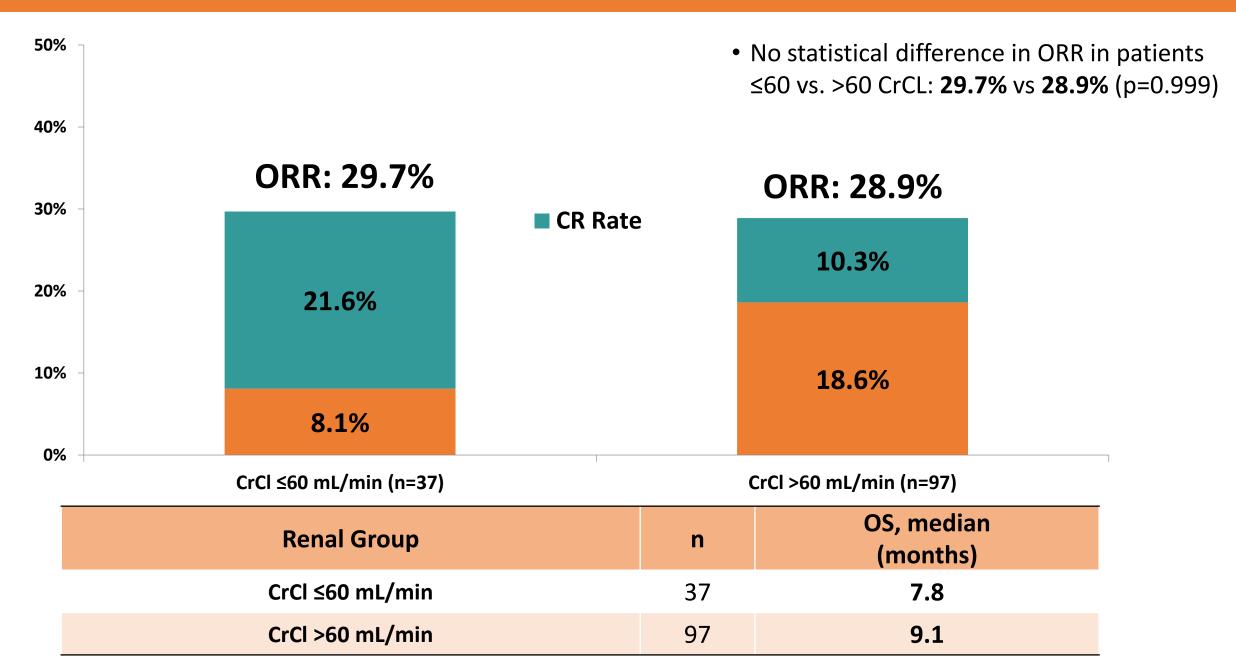
Methods: Subset Analysis based on Renal Function

We performed post-hoc analyses of the SADAL study to determine if there are differences in efficacy and safety among patients by baseline renal function, defined as patients with creatinine clearance (CrCl) ≤60 mL/min vs. >60 mL/min.

Total Patients Enrolled	N=134
CrCl ≤60 mL/min	N=37 (28%)
CrCl >60 mL/min	N=97 (72%)

Baseline and Disease Characteristics by Renal Group

	CrCl ≤60 mL/min (n=37)	CrCl >60 mL/min (n=97)
Median Age, Years (range)	74 (52, 91)	65 (35 <i>,</i> 83)
Median CrCl at Baseline, (range)	48.5 (6, 60)	85.3 (61, 180)
Male, n (%)	14 (37.8)	65 (67.0)
Female, n (%)	23 (62.2)	32 (33.0)
DLBCL Type, n (%)		
De novo	29 (78.4)	74 (76.3)
Transformed	8 (21.6)	23 (23.7)
DLBCL Subtype, n (%)		
GCB	15 (40.5)	48 (49.5)
non-GCB	21 (56.8)	45 (46.4)
Non-Classified	1 (2.7)	4 (4.1)
Number of Prior Regimens, Median (range)	2 (2-5)	2 (2-5)
Prior ASCT, n (%)	13 (35.1)	50 (51.5)


Related Adverse Events, ≥10% Overall

Adverse Events, ≥10% overall	CrCl ≤60 mL/min (n=37)	CrCl >60 mL/min (n=97)
Thrombocytopenia	21 (56.8)	51 (52.6)
Nausea	19 (51.4)	50 (51.5)
Fatigue	14 (37.8)	36 (37.1)
Decreased Appetite	12 (32.4)	34 (35.1)
Anemia	17 (45.9)	27 (27.8)
Neutropenia	10 (27.0)	31 (32.0)
Vomiting	12 (32.4)	23 (23.7)
Weight Decreased	9 (24.3)	20 (20.6)
Diarrhea	11 (29.7)	17 (17.5)
Asthenia	7 (18.9)	14 (14.4)
Constipation	3 (8.1)	11 (11.3)
Dizziness	5 (13.5)	8 (8.2)
Patients with ≥1 Serious Adverse Event	8 (21.6)	20 (20.6)

• The incidence of treatment-related AEs was comparable between both groups: The most common grade ≥3 treatment-related AEs for patients with reduced versus normal CrCl were thrombocytopenia (45.9% vs. 38.1%), nausea (5.4% vs. 6.2%), and fatigue (8.1% vs. 11.3%).

There was no clinically significant increase in treatment-related serious adverse events (21.6% vs. 20.6%) and adverse events leading to
discontinuation (10.8% vs. 7.2%) in patients with reduced or normal CrCl, respectively.

Efficacy – ORR, OS

Conclusions

- Selinexor had similar response rates in patients regardless of severity of renal function.
 - Treatment with selinexor demonstrated a similar ORR in patients with a baseline reduced CrCl (29.7%) vs normal CrCl (28.9%)
 - The OS was comparable in reduced vs normal renal patients: **7.8** vs **9.1** months
 - Selinexor is effective in de novo DLBCL (26.2% ORR) or transformed lymphoma patients (38.7% ORR)
- The incidence of treatment-related **AEs was comparable between both groups**

Oral Selinexor is approved and important option for patients with relapsed DLBCL including patients with renal dysfunction