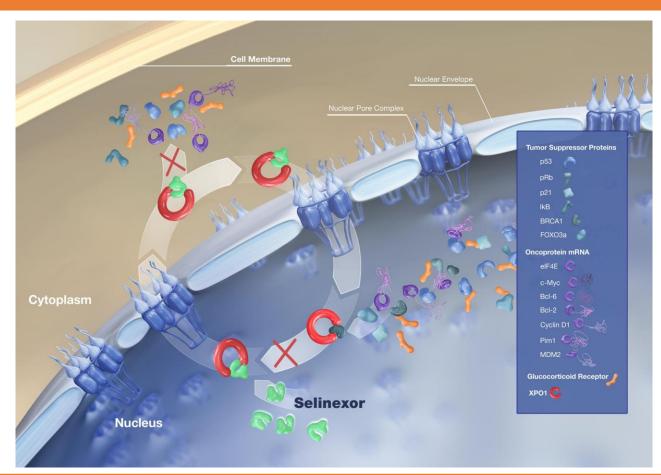
Effect of Age on the Efficacy and Safety of Single Agent Oral Selinexor in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Subset Analysis from the **SADAL Pivotal Phase 2b Study**


Marie Maerevoet³¹, Michael W. Schuster¹, Miguel A Canales^{2,3}, Jason Westin⁴, Josée M Zijlstra⁵, George A Follows⁶, Reem Karmali⁷, Nagesh Kalakonda⁸, Andre H. Goy⁹, Rene-Olivier Casasnovas¹⁰, Joost Vermaat¹¹, Eric Van Den Neste¹², Sylvain Choquet¹³, Catherine Thieblemont¹⁴, Federica Cavallo¹⁵, Maria de Fatima De La Cruz¹⁶, Brian T. Hill¹⁷, Herve Tilly¹⁸, Shireen Kassam¹⁹, Reda Bouabdallah²⁰, Ulrich Jaeger²¹, Ronit Gurion²², Paolo Caimi²³, Peter Martin²⁴, Andrew Davies²⁵, Sonali M. Smith²⁶, Graham P. Collins²⁷, Fritz Offner²⁸, Gilles Salles²⁹, Xiwen Ma³⁰, Kelly Corona³⁰, Jean-Richard Saint-Martin³⁰, Anita A. Joshi³⁰, Kamal Chamoun³⁰, Hongwei Wang³⁰, Jatin J. Shah³⁰, Sharon Shacham³⁰, Michael G Kauffman³⁰

¹Stony Brook University, Stony Brook, NY; ²La Paz University Hospital, Madrid, Spain; ³Hematology and Hemotherapy Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain; ⁴Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; ⁵Amsterdam UMC, Vrije Universiteit, Cancer Center, Amsterdam, Netherlands on behalf of the Lunenburg Lymphoma Phase I/II Consortium — HOVON /LLPC; ⁶Addenbrooke's Hospital, Cambridge, United Kingdom; ¹Division of Hematology Oncology, Northwestern University, Chicago, IL; ³University of Liverpool, United Kingdom; ¹Division of Lymphoma, John Theurer Center, Hackensack University Medical Center, Hackensack, NJ; ¹OHématologie Clinique and INSERM 1231, CHU Dijon, France; ¹¹Department of Hematology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ¹¹Z(Iniques universitaires Saint-Luc, Brussels, BEL; ¹³Hospital Pitie Salpetriere, Paris, France; ¹⁴APHP, Hôpital Saint-Louis, Hémato-oncologie, Université de Paris, Paris Diderot, Paris, France; ¹⁵Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy; ¹⁶Hospital Universitario Virgen del Rocio, Sevilla, Spain; ¹¬Taussig Cancer Institute, Department of Hematology, University of Torino, Cleveland, OH; ¹⁶Centrer Benzi Be

Conflict of Interest Disclosure

There are no relationships to disclose

Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export and Reactivates Tumor Suppressor Proteins

- Selinexor selectively binds and inactivates exportin 1 (XPO1)
 - Forcing the nuclear retention and reactivation of cell cycle regulators such as p53, FOXO, IkB, and Rb
 - Reducing oncoproteins known to play critical roles in NHL (c-Myc, Bcl2, Bcl6, BclXL)
 - XPO1 overexpression in DLBCL correlates with poor prognosis
 - Selinexor in combination with dexamethasone (Sd) has been approved by the FDA for patients with relapsed / refractory multiple myeloma.

Single agent oral Selinexor is approved by the FDA for the treatment of patients with relapsed or refractory DLBCL, de novo or transformed from follicular lymphoma after ≥2 prior therapies

SADAL Trial Design

SADAL Trial: The SADAL (Selinexor Against Diffuse Aggressive Lymphoma) study was a multi-center, open-label Phase 2b study which enrolled patients with previously treated, pathologically confirmed de novo DLBCL, or DLBCL transformed from previously diagnosed indolent lymphoma, and having received at least 2 prior therapies.

Pathologically confirmed de novo DLBCL, or DLBCL transformed from indolent lymphoma:

Received at least2 prior therapies

N = 134

Selinexor (60 mg)
Twice Weekly
28-day cycles

PD or unacceptable toxicity

Primary Endpoint: ORR

(accessed independently by central imaging committee)

Key Secondary Endpoints:

OS DoR Safety

SADAL Overall Efficacy Results

	Response per IRC ^a , (n=134)	Median DOR per IRC, months (95% CI) ^c (n=39)
Overall Response Rate (ORR)b, (95% CI)	39 (29.0) (22.0, 38.0)	9.3 (4.9, NE)
Complete Response (CR), n (%)	18 (13.0)	23.0 (10.4, NE)
Partial Response (PR), n (%)	21 (15.7)	4.4 (1.9, NE)
Stable Disease (SD), n (%)	11 (8.2)	
Progressive Disease (PD) / Not Evaluable (NE), n (%)	84 (62.7)	

Median time to PR or better: 8.1 weeks (range: 6.7 – 16.4)

a. Responses were adjudicated according to the Lugano 2014 Criteria (Cheson BD, et al. *J Clin Oncol*. 2014;32(27):3059-3068. doi: 10.1200/JCO.2013.54.8800) by an Independent Radiologic Committee (IRC) and confirmed by an Independent Oncologist Reviewer. The Deauville criteria (a 5-point scale) was used to grade response using PET-CT. PET-CT results were prioritized over CT results.
b. Includes CR + PR.

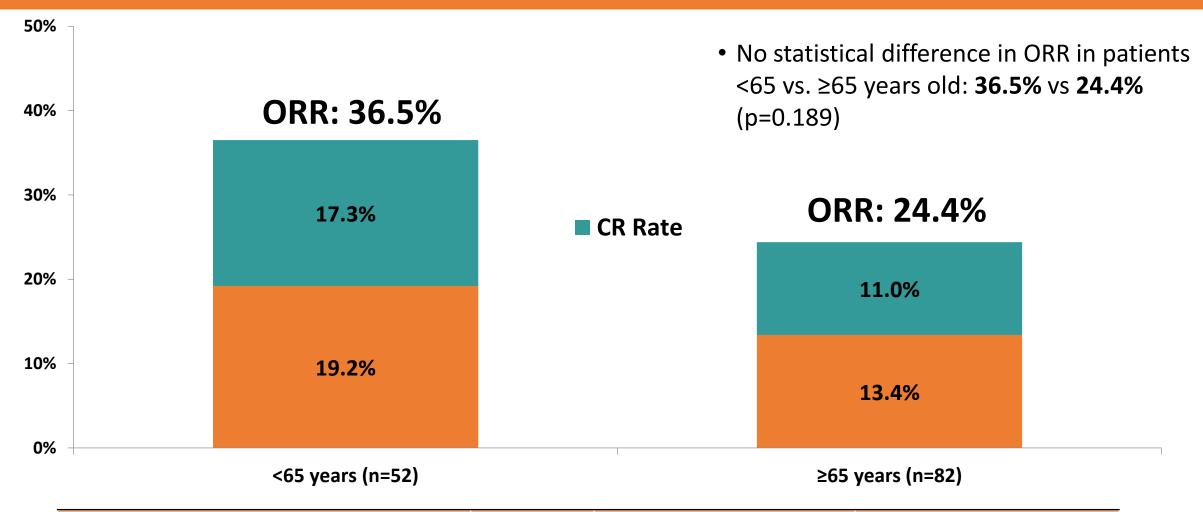
c. Median follow up 11.1 months

Methods: SADAL Subset Analysis based on Age

We performed post-hoc analyses of the SADAL study to determine if there are differences in efficacy and safety among patients by age groups, defined as patients: <65 years old vs ≥65 years old.

Total Patients Enrolled	N=134	
<65 years old	N=52 (39%)	
≥65 years old	N=82 (61%)	

Baseline and Disease Characteristics by Age Group


	Age <65 years (n=52)	Age ≥65 years (n=82)
Median Age, Years (range)	57 (35, 64)	73 (65, 91)
Age Category, n (%)		
18 – 50	8 (15.4)	
51 – 64	44 (84.6)	
65 – 74		49 (59.8)
≥75		33 (40.2)
Male, n (%)	32 (61.5)	47 (57.3)
Female, n (%)	20 (38.5)	35 (42.7)
DLBCL Type, n (%)		
De novo	43 (82.7)	60 (73.2)
Transformed	9 (17.3)	22 (26.8)
DLBCL Subtype, n (%)		
GCB	28 (53.8)	35 (42.7)
non-GCB	21 (40.4)	45 (54.9)
Non-Classified	3 (5.8)	2 (2.4)
Number of Prior Regimens, Median (range)	2 (2-5)	2 (2-5)
Prior ASCT, n (%)	32 (61.5)	31 (37.8)

Related Adverse Events, ≥10% Overall

Adverse Events, ≥10% overall	<65 years (n=52)	≥65 years (n=82)
Thrombocytopenia	31 (59.6)	41 (50.0)
Nausea	24 (46.2)	45 (54.9)
Fatigue	17 (32.7)	33 (40.2)
Decreased Appetite	18 (34.6)	28 (34.1)
Anemia	19 (36.5)	25 (30.5)
Neutropenia	17 (32.7)	24 (29.3)
Vomiting	9 (17.3)	26 (31.7)
Weight Decreased	7 (13.5)	22 (26.8)
Diarrhea	7 (13.5)	21 (25.6)
Asthenia	6 (11.5)	15 (18.3)
Constipation	7 (13.5)	7 (8.5)
Dizziness	5 (9.6)	8 (9.8)
Patients with ≥1 Serious Adverse Event	6 (11.5)	22 (26.8)

[•] The incidence of treatment-related AEs was comparable between both groups: The most common grade ≥3 AEs in <65 vs ≥65 year olds were thrombocytopenia (42.3% vs 39.0%), nausea (3.8% vs 7.3%), and fatigue (5.8% vs 13.4%). Treatment-related serious AEs occurred in 11.5% of patients <65 (n=6) and 26.8% ≥65 (n=22). Treatment discontinuations due to AEs occurred at a lower incidence in the <65 group compared with ≥65 (3.8% vs 11.0%).

Efficacy – ORR, DOR, OS

Age Group	n	DOR, median (months)	OS, median (months)
<65 Years	52	9.7	13.7
≥65 Years	82	9.2	7.8

Conclusions

- In patients with relapsed / refractory DLBCL who were ≥65 years old had similar clinical benefit to those <65 years old when treated with oral selinexor.
 - There was no statistical difference in ORR in patients <65 vs ≥65 years old: 36.5% vs 24.4% (p=0.189). The complete response (CR) rates were 17.3% and 11% (p=0.431), respectively.
 - Median **DOR** was similar at **9.7 months** in the <65 compared to **9.2 months** in the ≥65 year old patients.
 - Selinexor is effective in de novo DLBCL (26.2% ORR) or transformed lymphoma patients (38.7% ORR)
- The incidence of treatment-related AEs was comparable between patients <65 and ≥65 years old

Selinexor is approved, and an active convenient oral option for patients with relapsed DLBCL including older patients