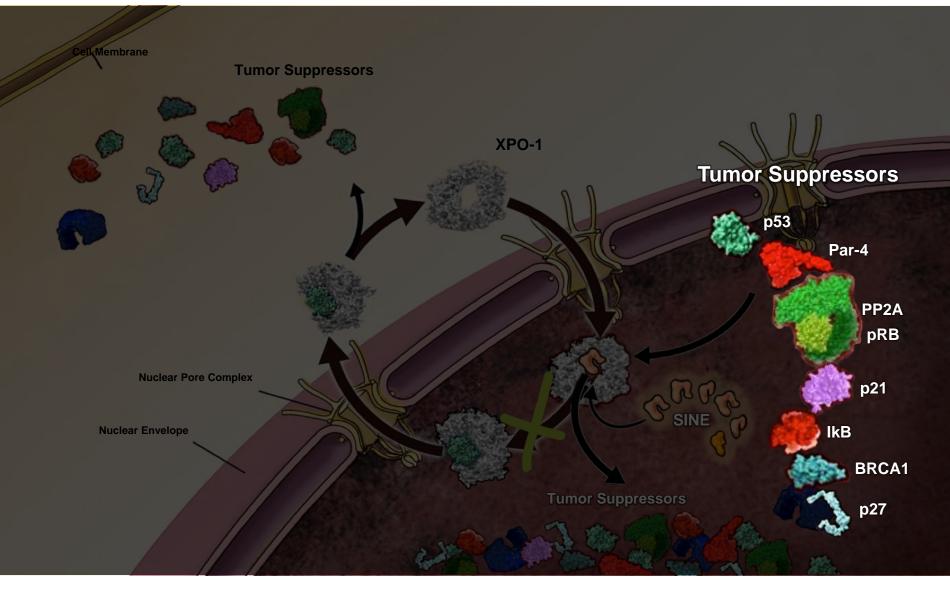

Targeting CRM1 in AML

Gert Ossenkoppele & colleagues VU University Medical Center Amsterdam

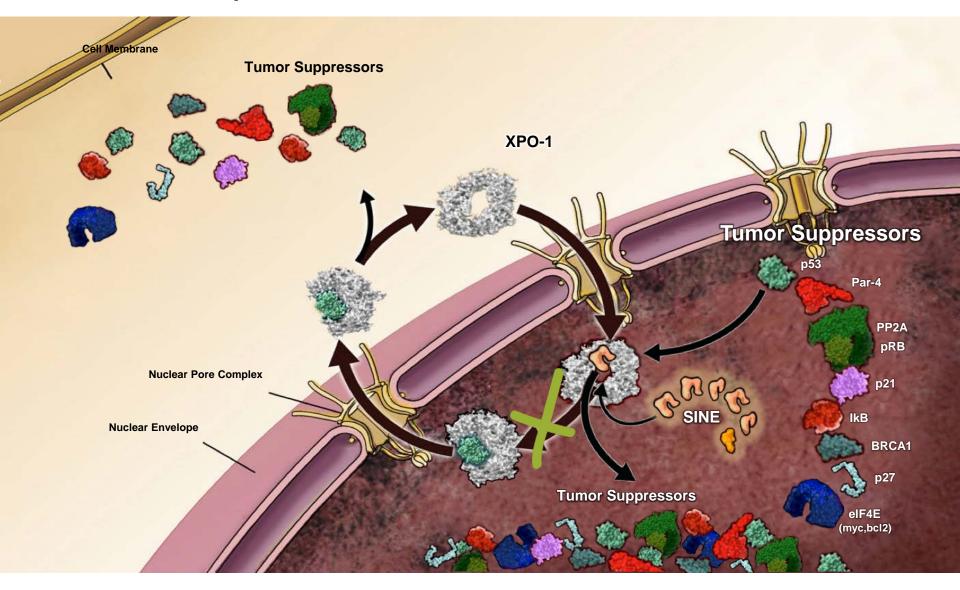
Approved Treatment Options for AML Compared to Other Hematologic Malignancies

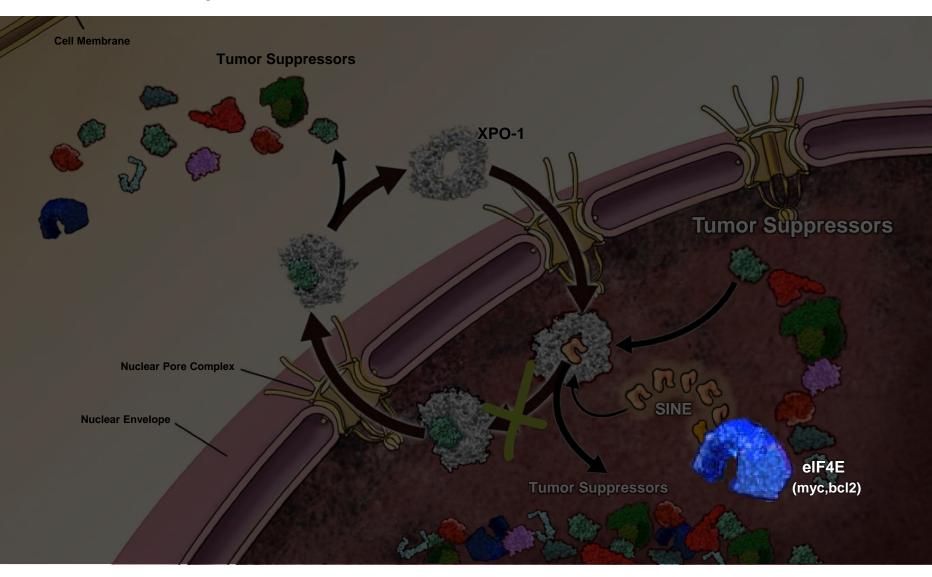
1. NCI Drug Info. http://www.cancer.gov/cancertopics/druginfo. 2. EMA Drug Approvals.

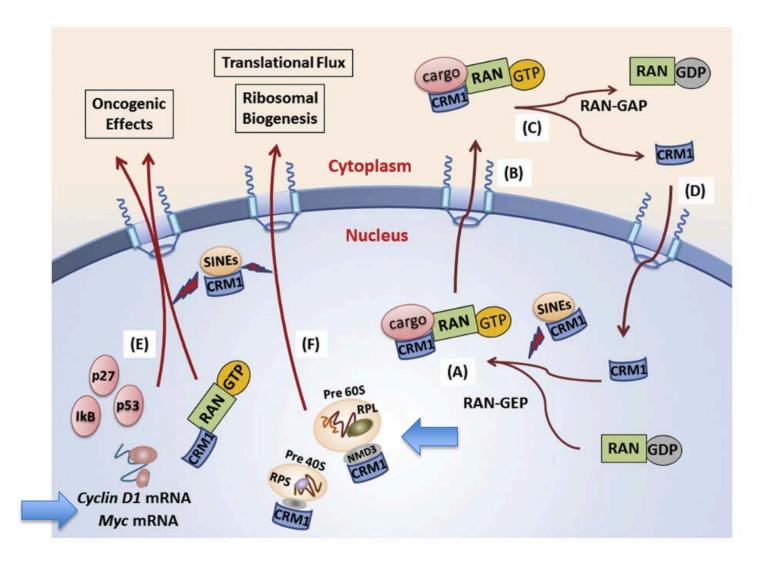
http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&mid=. 3. FDA Drug Approvals. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.. 3. NCCN clinical practice guidelines in oncology: acute myeloid leukemia. National Comprehensive Cancer Network website. V.2.2014. http://www.nccn.org/professionals/physician_gls/PDF/aml.pdf


Selective Inhibitors of Nuclear Export(SINE)

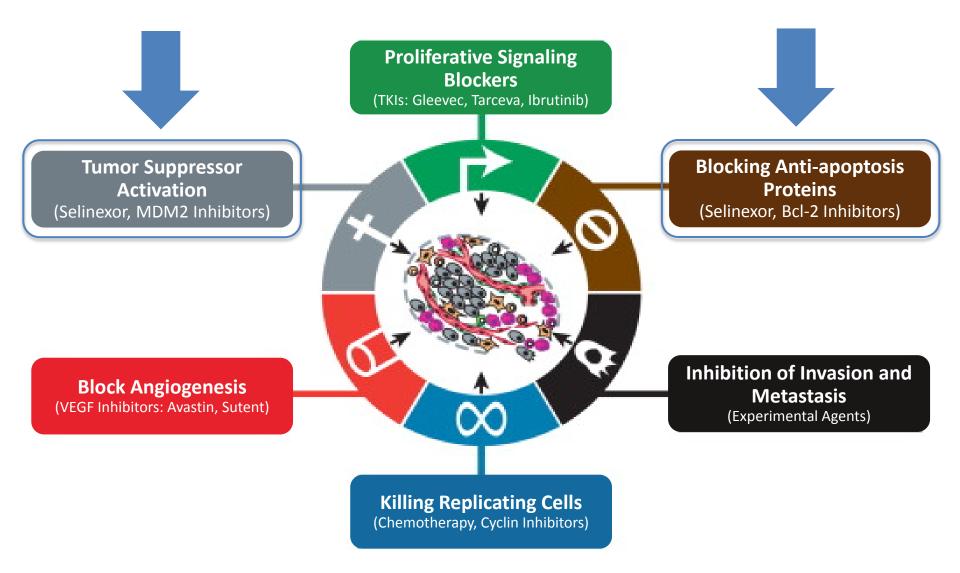
- Cancer cells can inactivate their Tumor Suppressor Proteins (TSPs) via nuclear export
- Exportin 1 (XPO1, CRM1) is the exclusive nuclear exporter of most TSPs
- XPO1 is elevated in Acute Myeloid Leukemia (AML), Chronic Lymphocytic Leukemia (CLL), NHL and other malignancies
- Selinexor (KPT-330) is a covalent, oral Selective Inhibitor of Nuclear Export (SINE) that blocks XPO1


Selinexor: Novel Anti-Cancer Agent: Restores Tumor Suppressors & Reduces Oncoproteins

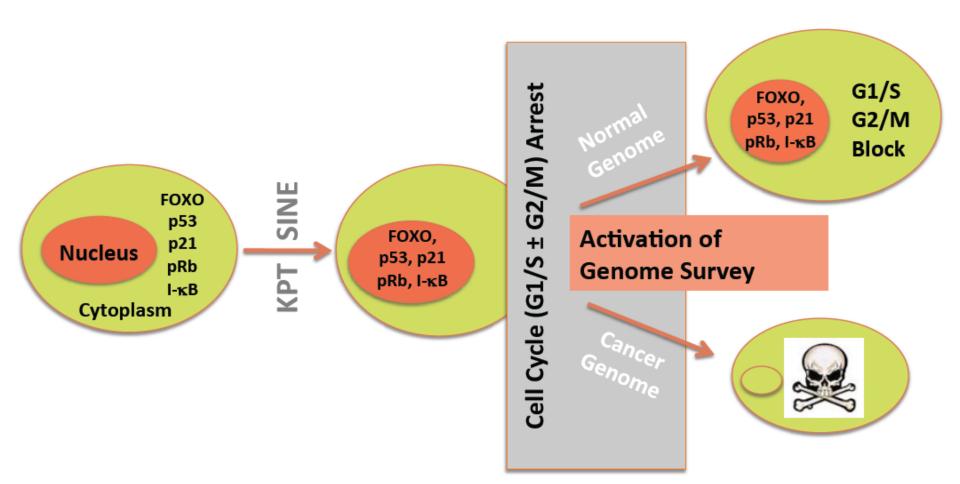

Selinexor: Novel Anti-Cancer Agent: Restores Tumor Suppressors & Reduces Oncoproteins


Selinexor: Novel Anti-Cancer Agent: Restores Tumor Suppressors & Reduces Oncoproteins

Selinexor: Novel Anti-Cancer Agent: Restores Tumor Suppressors & Reduces Oncoproteins

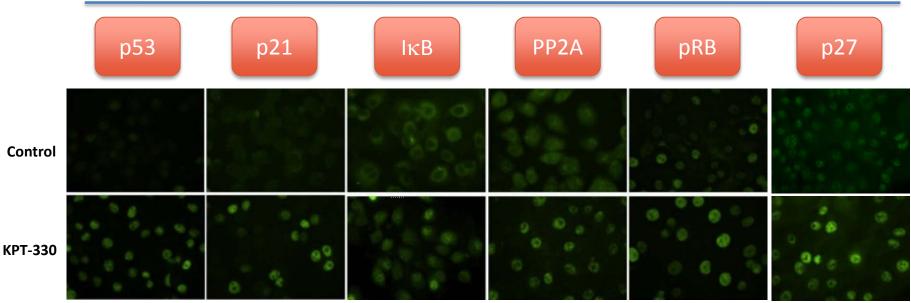


SINE Mechanisms of Action Beyond TSPs: Oncoproteins, Ribosomes

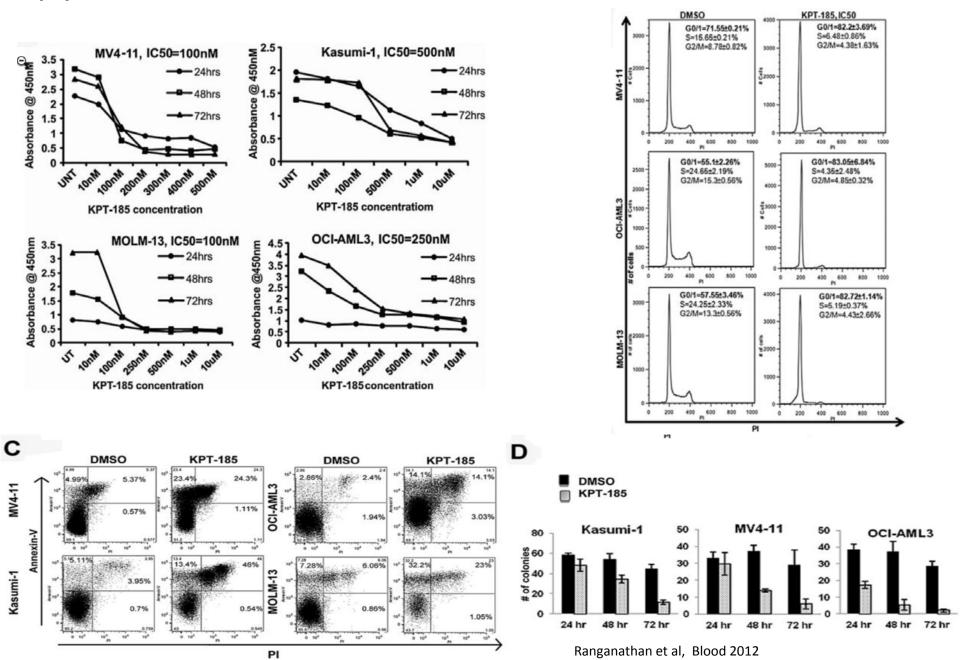


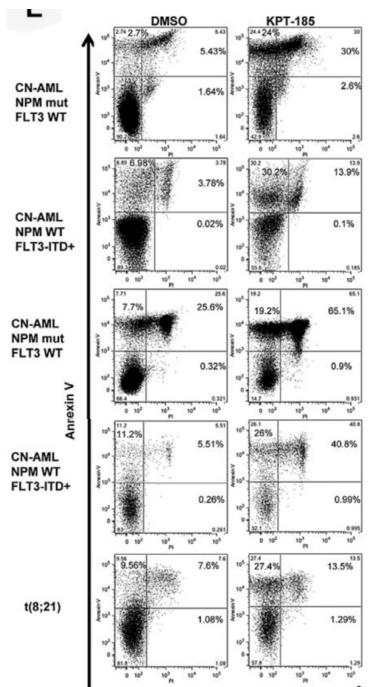
From Ishizawa et al., 2015. Pharmacol & Therap.

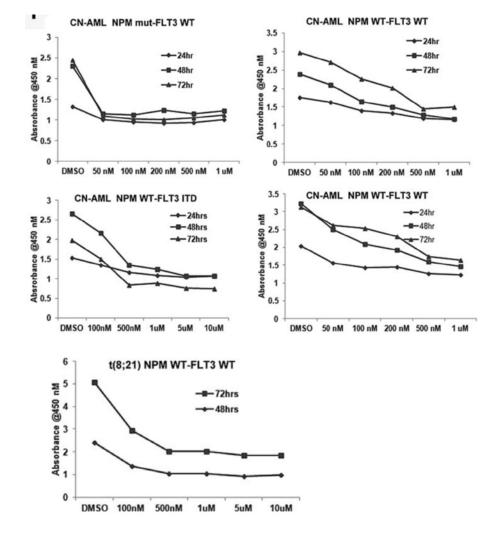
SINE Compounds Target the Hallmarks of Cancer Through Unique Dual Pathways


SINE XPO1 Antagonists Kill Tumor Cells: Normal cells undergo transient, reversible cell cycle block

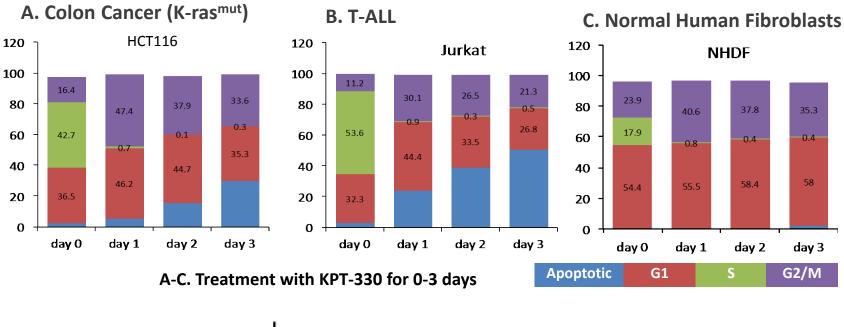
Selinexor Forces Nuclear Retention, Increases Nuclear Levels of, and Activates Many TSPs



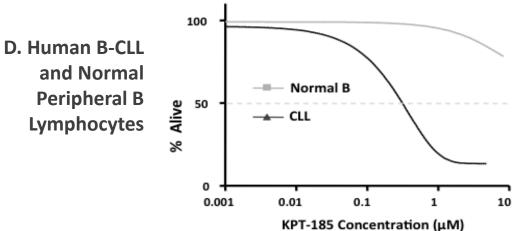

Forced Nuclear Retention & Activation by Blocking Nuclear Export


Tumor cells show very low levels and/or cytoplasmic location of their TSPs KPT-330 increases the total level *and* nuclear location of multiple TSPs

KPT-SINE significantly inhibits proliferation and induces cell-cycle arrest and apoptosis of AML cell lines



KPT-SINE significantly inhibits proliferation and induces cell-cycle arrest and apoptosis of primary AML blasts

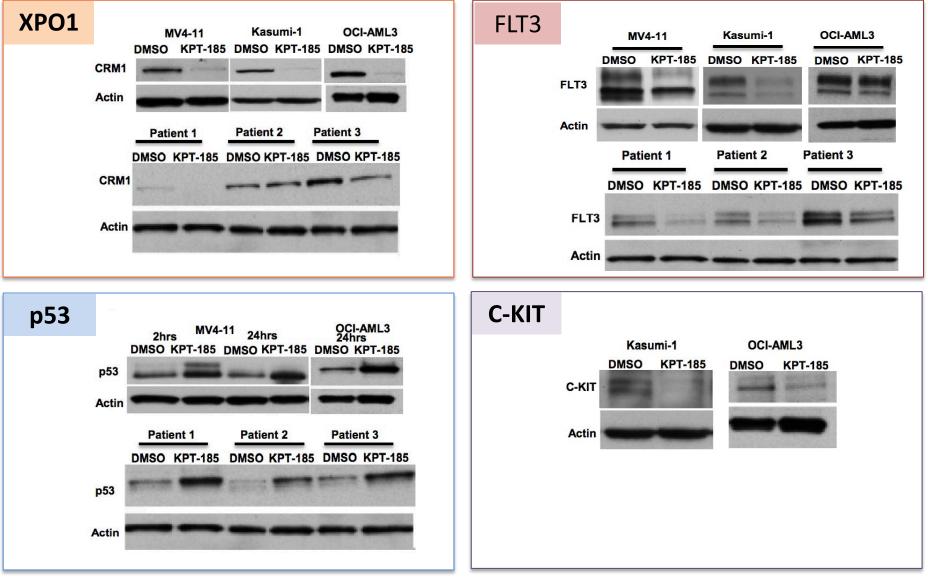


Ranganathan et al, Blood 2012

SINE Compounds Induce Cell Cycle Arrest in Multiple Cancer Cell Types

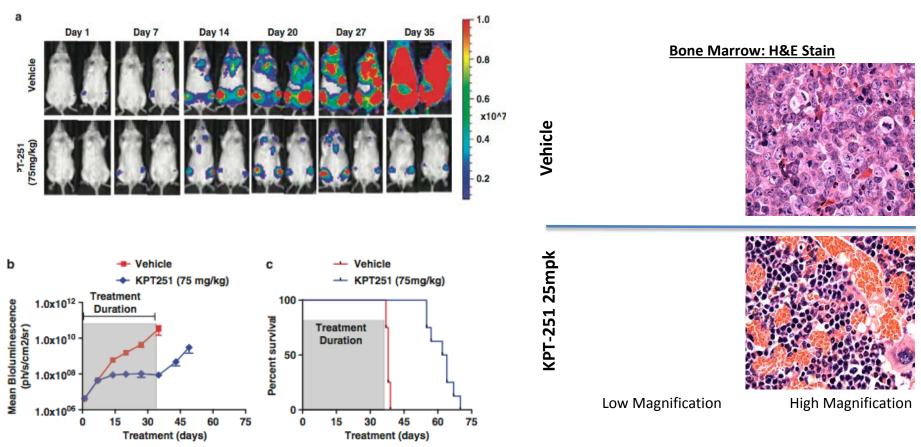
• Apotosis is induced in cancer cell lines, but not in normal cells

Selinexor Shows Marked Cytotoxicity Against AML and ALL Cell lines and Patients Cells


Origin	Cell Line	IC ₅₀ (nM)		Patient	Ag e	wнo	WBX	Cytogenetics	NPM1	FLT3	IC ₅₀ (nM)
	MOLM-13	21		1	27	Acute Myelomonocytic Leukemia	39	46,XX(20)	Mut (A)	wт	100
	OCI-AML2	41				сецкета					
	MV4-11	46		2	42	AML with maturation	26	46,XY(20)	Mut (A)	wт	100
Acute Myeloid	SKNO-1	63		3	62	AML without maturation	199	46,XX(20) 46,XY(20)	Mut (A)	wт	100
Leukemia(AML)	SKM-1	88									
And	OCI-AML3	47		4	77	AML with maturation	85		Mut (A)	wт	50
Acute Lymphoblastic Leukemia (ALL)	HPB-ALL	55		5	62	AML with MDS related changes	8.8	46,XY(20)	wт	wт	500
	DND-41	203				-					
	Jurkat	40		6	52	AML with maturation	75	46,XY(20)	WT	wт	500
	MOLT-4	34		7	45	Acute Myelomonocytic	53	46,XX(20)	wt	wт	500
	SKW-3	123				Leukemia Acute Myelomonocytic Leukemia		46,XX(20)			500
	KOPTK-1	71		8	56		69		wт	ITD +	
	HAL-01	115		9	20	AML with inv(16)	45	AR,XX,inv(16)	WT	wт	500
	UOCB-1	85				Acute					
Normal Cells	HEK293	1047		10	53	Myelomonocytic Leukemia	79	46,XX(20)	WТ	ITD +	500
	COS	552		11	85	AML without	66	46,XY(20)	wт	ITD +	500
	СНО	1329		12	52	Maturation AML with t(8;21)	2.9	45,X,-X,t(8;21)	wt	+ WT	500
ganathan et al, Blooc				13	50	AML with t(8;21)	15.6	45,X,-Y,t(8;21)	wt	wт	500

Rangana

Grazon etal. EHA 2014 Annual Meeting

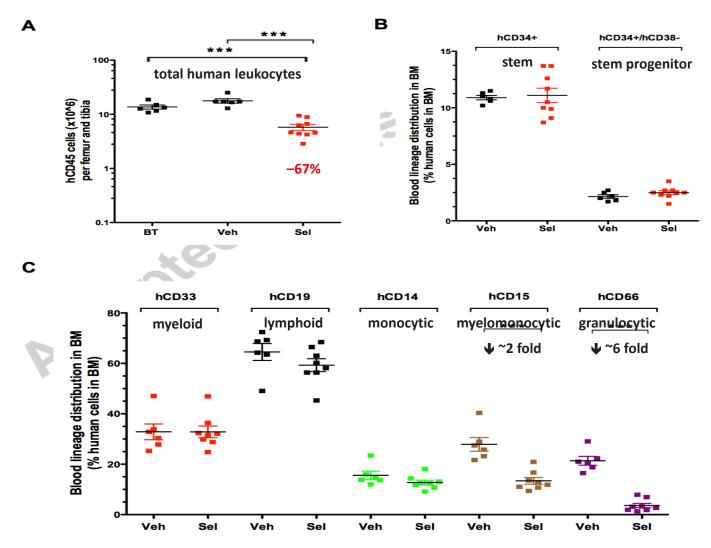

Selinexor Increases p53 levels and Reduces Flt3 and c-KIT

Expression in AML cells

Ranganathan et al, Blood 2012 Grazon etal. EHA 2014 Annual Meeting

SINEs Kills AML But Not Normal Hematopoietic Cells; Maintaining Near-Normal Bone Marrow

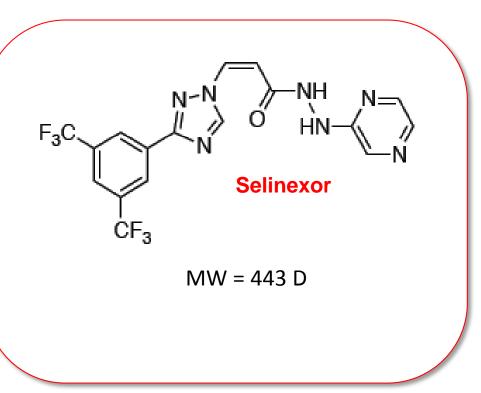
MOLT-4 (FLT3 ITD) AML Leukemograft Mice


Etchin et al, Leukemia 2012 Grazon etal. EHA 2014 Annual Meeting

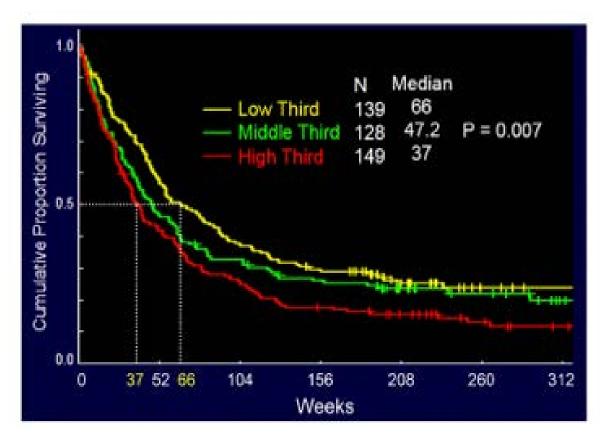
SINEs Target Leukemia Initiating Cells (LICs) in Three Primary AML Patient Samples

Xenograft	Genotype	Primary Tumor Effect	LIC Effect
AML-CK1	46,XX,dup(2)(q21q33), t(8;16)(p11;p13),psu dic(22;1)(p11;p11)[10]/ 46,XX,dup(1)(q32q42), t(8;16),psu dic(9;1)(q34;p11) [4]/ 46,XX,t(8;16),psu dic (19;1) (p13;p11)[4]/46,XX[2]; FLT3 WT	↓ ~80%	↓ ~6 fold
AML-CK2	46,XY,-2,der(5)t(2;5)(q3?1;q2?5), inv(11)(q21q23),add(15)(p11), del(20)(q12),+mar[19]/46, XY[1]; FLT3 WT	↓ ~40%	↓ >434 fold
AML-CN	46, XX; FLT3-ITD	↓ ~90%	↓ 171 fold
	A Vehicle (3x/week for 4 weeks) Bone marrow hCD45 cells (10^6 to 10^2 hCD45 cells)	Limit Dilution: 10^2 10^3 10^4 10^5 10^6 Secondary recipients	
	Selinexor (KPT-330) at 20mg/kg (3X/week for 4 weeks) Bone marrow hCD45 cells (10^6 to 10^2 hCD45 cells)	Limit Dilution: 10^2 10^3 10^4 10^5 10^6 Secondary recipients	

Etchin et al., Leukemia 2015


Selinexor Spares Most Normal Hematopoietic Cells in NSG Mice with Engrafted with Human Cord Blood (Normal) Cells

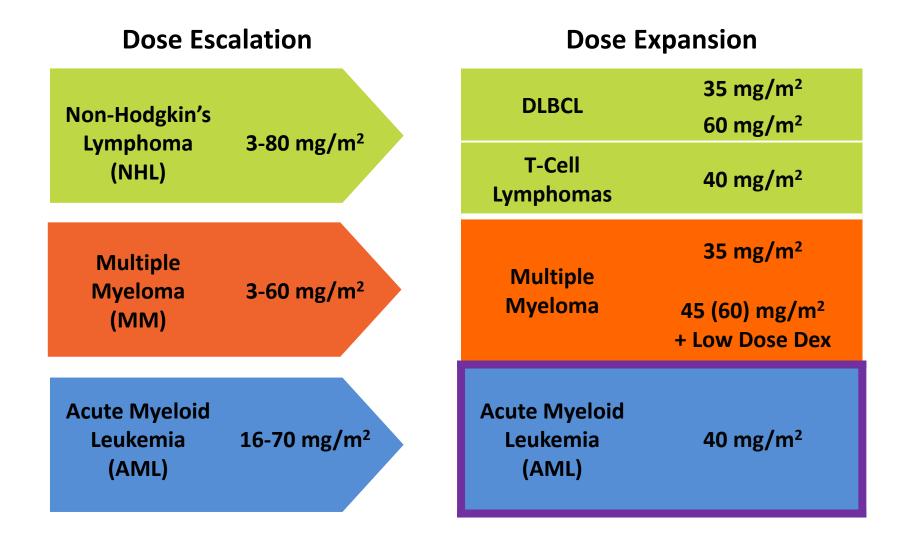
Etchin et al., Leukemia 2015


Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export (SINE)

- Novel, small molecule selective inhibitor of XPO1
- Oral drug administered 1-2 times per week
- No known drug-drug interactions
- Potent anti-leukemic and antivitro and in vivo models
- Anti-tumor activity in ongoing Phase 1 and 2 studies in advanced hematologic and solid tumors
- Main side effects (anorexia, nausea, fatigue) manageable with standard supportive care, including steroids

XPO1 Elevation Predicts More Severe Disease and Poorer Survival in AML Patients

- Kaplan-Meier curves of multivariate analysis for overall survival in patients with AML
- High XPO1 expression is an independent predictor of overall survival in AML


Higher levels of XPO1 associated with:

- Higher marrow % blast (p< 0.00001)
- White cell counts (p<0.0079)
- Peripheral blood % blast (p<0.00001)
- Absolute peripheral blood blast count (p<0.0002)

Expression lower in favorable cytogenetics compared with intermediate/unfavorable cytogenetics (p<0.029)

XPO1 levels were higher in patients with FLT3 mutations (p<0.003)

Selinexor (KPT-330) Phase 1 Hematological Malignancies Study

clinicaltrials.gov: NCT01607892

A Phase 1 Dose Escalation Study of the Oral Selective Inhibitor of Nuclear Export (SINE) KPT-330 (Selinexor) in Patients (pts) with Relapsed / Refractory Acute Myeloid Leukemia (AML)

Yee et al EHA 2014

Phase 1, Open Label, Dose Escalation Study in Patients with Advanced, Hematological Malignancies

Study Design:

- Arm 2 included patients with AML.
- Doses 16, 23, 30, 40, 55 and 70 mg/m²; 10 doses/cycle (2-3 doses/week) or 8 doses/cycle (twice weekly) or 4 doses/cycle (once weekly)
- Modified "3+3" design

Major Eligibility Criteria:

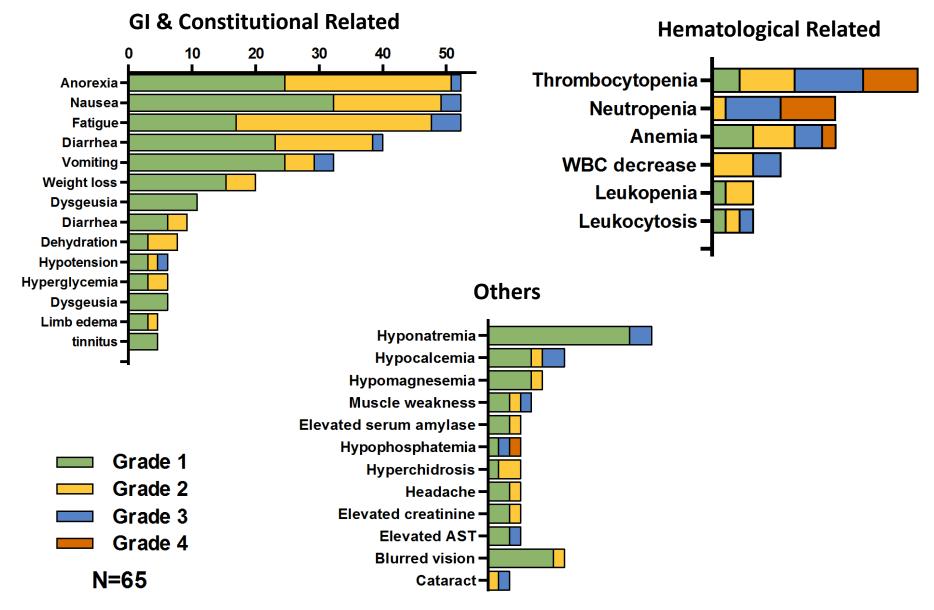
- Patients with AML with no available standard treatments
- ECOG 0-1
- Documented progression at study entry

DLT Definition

- \geq 3 missed doses in 28 days at target dose
- Discontinuation of a patient due to a toxicity in Cycle 1

Non Hematologic:

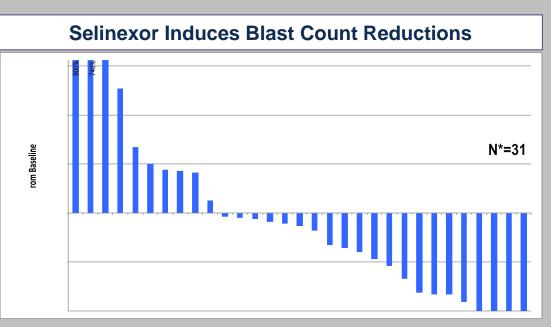
- Grade ≥3 excluding nausea/vomiting or electrolyte imbalances amenable to supportive care and AST/ALT lasting less than 7 days
- Grade \geq 3 fatigue lasting \geq 5 days while taking supportive care


Selinexor Phase 1 Study in AML: Patient Demographics

Characteristic	N=65	Therapy Line for [Disease	
Mean Age (range)	67 (24 – 89)	2nd Line AML	15 (23%)	
Male / Female	34 Males : 31 Females			
Mean Prior Lines of		3rd Line AML	13 (20%)	
Treatment (range)	3 (1 – 7)	> 3rd Line AML	28 (43%)	
ECOG performance	10 / 17			
status, 0/1	18 / 47	Unknown	9 (14%)	

AML Cytogenetic Risk								
Favorable	10 (15%)							
Intermediate	28 (43%)							
Adverse	23 (35%)							
Unknown	4 (6%)							

Summary: Patients with AML enrolled in KCP-330-001 have heavily pretreated AML with disease that is progressing on study entry. The majority of patients have intermediate or poor cytogenetic risk >50% are over 67 years old.

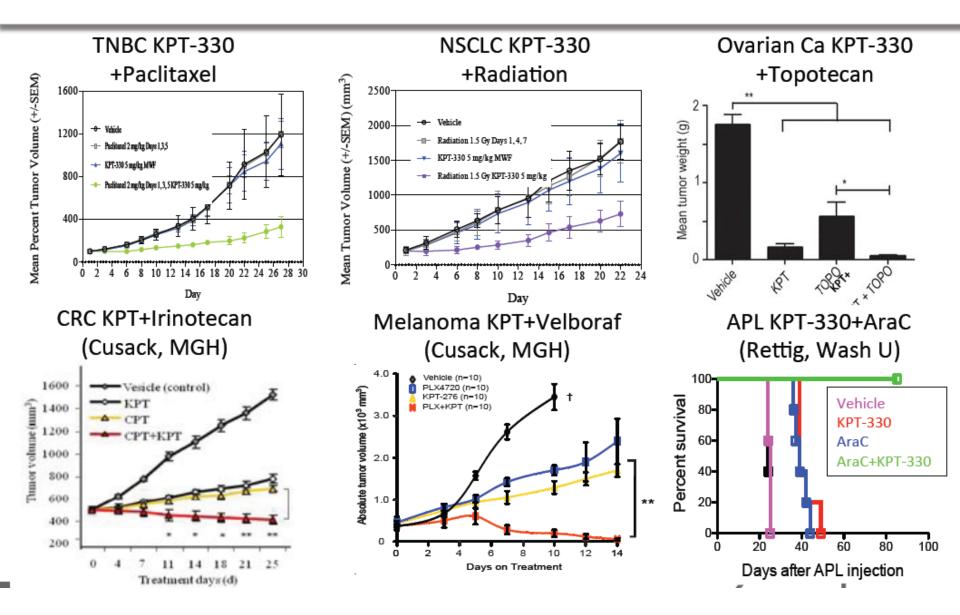

Selinexor AML Phase 1 Study: Drug Related Adverse Events

Yee et al EHA 2014

Selinexor Phase 1 Study: Efficacy and Conclusions

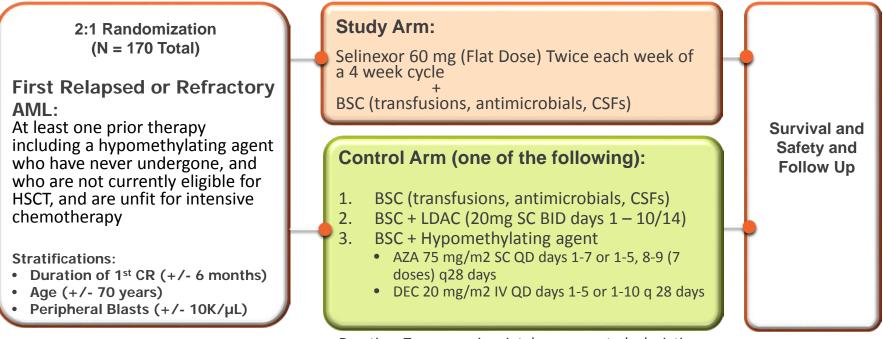
Best Responses in Patients with AML as 13-May-2014											
N	DCR	ORR	CR	CR(i)	PR	MLFS	SD	PD	NE		
63	31	10	5	2	1	2	21	16	16		
%	49%	16%	8%	3%	2%	3%	33%	25%	25%		

- Selinexor (KPT-330) is a covalent, oral SINE XPO1 antagonist that forces nuclear restoration and reactivation of TSP and reduces proto-oncogenes leading to the selective apoptosis of AML cells.
- Common AEs are reversible nausea, anorexia and fatigue; extended dosing feasible with appetite stimulants and antinausea agents
- Objective Responses and reduction in BM blasts were observed in heavily pre-treated patients with AML


BM Blast cells were evaluated at screening and at the end of each cycl

* Excludes 14 patients who withdrew consent & 18 patients who clinically progressed before post treatment bone marrow biopsy

DCR=Disease Control Rate (CR+CR(i)+PR+MLFS+SD), **ORR**=Overall Response Rate (CR+CR(i)+PR+MLFS), **CR**=Complete Response, **CR(i)**=Complete Response Incomplete, **MLFS**=Morphological Leukemia Free State, **SD**=Stable Disease, **PD**=Progressive Disease, **NE**=Non Evaluable


Yee et al EHA 2014

SINE Combination Studies

KCP-330-008: SOPRA = Selinexor in Older Patients with Relapsed/refractory AML

 A Randomized, Open-label, Phase 2 Study of the Selective Inhibitor of Nuclear Export Factor (SINE) Selinexor (KPT-330), Versus Specified Physician Choice in Patients ≥ 60 Years Old With Relapsed/Refractory Acute Myeloid Leukemia (AML) Who are Ineligible for Intensive Chemotherapy or Transplantation (Amended)

Duration: To progression, intolerance or study deviations

Objectives:

Primary: OS Secondary: CRR (C

CRR (CR+CRi+CRp), DOR, DCR, Safety, QOL

Rationale for Recent Dose Reduction in SOPRA Study

- Periodic review of Serious Adverse Events (SAEs) on SOPRA trial revealed Sepsis Rates of 11% (8 of 70 pts) on selinexor 55mg/m² (~100mg) versus 6.7% (2 of 30 pts) on Physician's Choice
- Although this trend was not statistically significant, review of Phase 1 data indicated that higher doses of selinexor (>80mg) were associated with increased sepsis risk in AML only
- Phase 1 & 2 results across other hematologic and solid tumors showed no increase in sepsis
- Majority of the Phase 1 AML responses occurred at selinexor doses of <70mg
- Therefore, dose in SOPRA study was reduced to 60mg twice weekly (~35 mg/m²) and accrual count restarting at N = 170

8						0 0		,				
	КСР-330-											
	-008	-001	-001	-002	-003	-004	-005	-006	-007	-009	-010	-013
	Elderly AML	AML +ALL	Other <u>Heme</u>	Solid Tumors	Sarcoma	GBM	Gyn	Sq H&N/lung	Prostate	DLBCL	Richter's	TCL
	N=70	N=78	N=273	N=188	N=55	N=28	N=104	N=46	N=17	N=48	N=6	N=10
Total SAEs	47	61	65	29	0	1	9	14	0	10	3	1
% Patients with Any Infection SAE	67%	78%	24%	15%	0%	4%	9%	30%	0%	21%	50%	10%
% Patients with Sepsis	11%	15%	2%	4%	0%	0%	0%	2%	0%	0%	0%	0%
% Patients with Pneumonia / lung Infections	16%	21%	9%	7%	0%	0%	3%	20%	0%	8%	17%	0%

Percentage of Patients with Infectious SAEs Across All Indications (Single Agent Selinexor)

Sepsis Rates with Selinexor are Similar to Other Agents in Elderly AML Patients

	Decitabine 1 st Line ¹	Azacytidine Rel/Ref ²	Selinexor SOPRA	Selinexor Phase 1 AML	Physician's Choice SOPRA
Number	238	130	70	88	30
Febrile Neutropenia	32%	Not Reported	24%	25%	33%
Sepsis	12%	Not Reported	11%	15%	6.7%
Sepsis + Febrile Neutropenia	44%	62%	35%	40%	40%

1. Kantarjian et al., 2012. J Clin Oncol. 30(21):2670

2. Itykson et al. 2015. Leuk Res. 39(2015):124

Conclusions

- Selinexor (KPT-330) is a Novel, oral SINE that can safely be given as monotherapy to patients with relapsed/refractory AML
 - Main toxicities: fatigue, anorexia, nausea
 - Single agent Phase 2/3 Recommended Dose is now 60 mg flat dose (~35 mg/m²) PO BIW
 - Maximum Tolerated Dose: 70 mg/m² PO BIW
 - Appetite stimulants permit long term use of selinexor
 - Individualized mitigation strategies for drug-associated toxicities is a top priority
- Selinexor has favorable PK and induces nuclear localization of Tumor Suppressor Proteins (TSPs) in patients' AML cells
- Selinexor demonstrates responses and durable stable disease in heavily pretreated AML patients, independent of underlying genetic abnormalities, including those with medium and high risk AML
- SOPRA is a Randomized Phase 2 study in patients ≥60 years old with relapsed/refractory AML with at least 1 prior therapy that are unfit for intensive chemotherapy or transplantation is ongoing (NCT02088541)