

PHASE I STUDY OF SELINEXOR, A SELECTIVE INHIBITOR OF NUCLEAR EXPORT, IN COMBINATION WITH FLUDARABINE AND CYTARABINE IN CHILDREN WITH RELAPSED OR REFRACTORY LEUKEMIA

Thomas B Alexander¹, Norman J Lacayo², John Choi³, Raul C. Ribeiro^{1, 4}, Ching-Hon Pui^{1, 4}, and Jeffrey E Rubnitz^{1, 4}

Departments of Oncology¹ and Pathology³, St. Jude Children's Research Hospital; Lucile Packard Children's Hospital Stanford and Stanford Cancer Institute², Stanford University; and the Department of Pediatrics⁴, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee

XPO1 expression is prognostic and selinexor is active in leukemia models

Objectives

Primary:

 Determine the <u>safety profile and maximal tolerated dose</u> of selinexor when given in combination with fludarabine and cytarabine

Secondary:

- Characterize the <u>pharmacokinetics</u> of oral selinexor after the first dose and at steady-state, as well as in combination with fludarabine and cytarabine
- Estimate the <u>overall response rate</u> of selinexor given with fludarabine and cytarabine in patients with relapsed or refractory hematologic malignancies

Trial design

Inclusion Criteria

- Any relapse of AML, MPAL
- 2nd or greater relapse ALL

St. Jude Children's Research Hospital Stanford Children's Health

Children's Hospital of Michigan Cook Children's Medical Center Duke University Medical Center Phoenix Children's Hospital University of Chicago

Phase 1 with expansion planned at MTD

- Combination therapy
- Rolling 6 design
- Four dose levels of selinexor (30mg/m², 40mg/m², 55mg/m², 70mg/m²)

Patient characteristics

18 patients enrolled

Disease	Number of patients			
AML	15			
MPAL	2			
ETP-ALL	1			

•	Number of patients
Refractory	4
1st Relapse (all early)	7
2nd Relapse	7
Previous Transplant	10

17 eligible for toxicity evaluation15 eligible for response evaluation

Selinexor dose	Disease type
30 mg/m ²	AML
30 mg/m ²	AML t(6;12)
30 mg/m ²	Secondary AML -7
30 mg/m ²	MPAL
40 mg/m ²	AML t(6;9)
40 mg/m ²	AML
40 mg/m ²	AML-7
55 mg/m ²	AML, M7
55 mg/m ²	ALL -> MPAL t(4;11)
55 mg/m ²	AML, M0
55 mg/m ²	AML, t(3;5)
55 mg/m ²	AML
55 mg/m ²	AML, t(9;11)
70 mg/m ²	AML, t(8;21)
70 mg/m^2	AML
70 mg/m ² *	AML
70 mg/m ² *	AML -> ETP-ALL
70 mg/m ² *	AML

PK testing shows dose proportional levels

	Day 1				Day 22					
Selinexor Dose (mg/m²)	No. of patients	C _{max} (ng/mL)	T _{max} (hours)	AUC _{0-8h} (ng*h/mL)	AUC ₀₋₄₈ (ng*h/mL)	$t_{1/2}$ (hours)	No. of patients	C _{max} (ng/mL)	T _{max} (hours)	AUC _{0-8h} (ng*h/mL)
30	4	537 ± 281	3 ± 1.5	2171 ± 618	4351 ± 513	6 ± 1	3	414 ± 124	4 ± 1	2239 ± 494
40	3	475 ± 157	2 ± 3.5	2311 ± 934	5440 ± 940	7 ± 2	3	420 ± 87	4 ± 2	1785 ± 376
55	4	776 ± 200	4 ± 0	5663 ± 3438	9838 ± 2413	8 ± 2.5	6	976 ± 665	3 ± 1	4627 ± 2484
70	5	996 ± 224	4 ± 1	4986 ± 979	10564 ± 1638	7 ± 1	3	1188 ± 474	2 ± 1	$7035 \pm NA$

PD testing shows on target activity

Change in levels of XPO1 mRNA by dose and duration of selinexor exposure

Cerebellar toxicity is a reversible dose limiting toxicity in pediatrics

Maximal Tolerated Dose is 55 mg/m²

Cerebellar Toxicity – Occurred at 70 mg/m² of selinexor

- First Case pain, aphasia, weakness, ataxia
 - MRI restricted diffusion in cerebellum
- Second Case significant ataxia, truncal instability
 - MRI restricted diffusion in cerebellum

Hyponatremia

- Grade 3 hyponatremia in 12 of 17 evaluable cases
- Nadir: range 123-132 mEq/L, median 128.5 mEq/L
- Asymptomatic and easily correctable in all cases

Selinexor can induce differentiation

MRD negative complete responses observed at day 15 and end of course 1

Single Agent Response (Day 15)

- 2 patients with CR, both MRD negative
 - 1 was in second relapse, 1 had refractory disease

MRD negative complete responses observed at day 15 and end of course 1

Single Agent Response (Day 15)

- 2 patients with CR, both MRD negative
 - 1 was in second relapse, 1 had refractory disease

Combination Response (End of course 1)

- 7/15 with CR or CRi
- 5 of responses were MRD negative

Can we predict responses?

Summary

Selinexor in combination with fludarabine cytarabine:

- 1. Cerebellar toxicity is the dose limiting toxicity
- 2. PK / PD results show expected concentration, half life and on target effects
- MRD negative complete responses were observed and response rate will be further explored in a Phase II study
- 4. The search for predictive markers continues...

Acknowledgements

Jeffrey Rubnitz, MD Karyopharm Therapeutics Inc., Newton, MA

Stanley Pounds, PhD

Support Staff – Jeana Cromer, Kathy Jackson, Tad McKeon, Linda Holloway, Heidi Clough Funding

- Cancer Center Support (CORE) grant P30 CA021765-30 from the National Institutes of Health
- Center of Excellence Grant from the State of Tennessee
- American Lebanese Syrian Associated Charities (ALSAC)

References

Etchin J, Sanda T, Mansour MR, et al: KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 161:117-127, 2013.

Etchin J, Sun Q, Kentsis A, et al: Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27:66-74, 2013.

Kojima K, Kornblau SM, Ruvolo V, et al: Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 121:4166-4174, 2013.

