PHASE I STUDY OF SELINEXOR, A SELECTIVE INHIBITOR OF NUCLEAR EXPORT, IN COMBINATION WITH FLUDARABINE AND CYTARABINE IN CHILDREN WITH RELAPSED OR REFRACTORY LEUKEMIA Thomas B Alexander¹, Norman J Lacayo², John Choi³, Raul C. Ribeiro^{1, 4}, Ching-Hon Pui^{1, 4}, and Jeffrey E Rubnitz^{1, 4} Departments of Oncology¹ and Pathology³, St. Jude Children's Research Hospital; Lucile Packard Children's Hospital Stanford and Stanford Cancer Institute², Stanford University; and the Department of Pediatrics⁴, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee # XPO1 expression is prognostic and selinexor is active in leukemia models # **Objectives** ### **Primary:** Determine the <u>safety profile and maximal tolerated dose</u> of selinexor when given in combination with fludarabine and cytarabine ## Secondary: - Characterize the <u>pharmacokinetics</u> of oral selinexor after the first dose and at steady-state, as well as in combination with fludarabine and cytarabine - Estimate the <u>overall response rate</u> of selinexor given with fludarabine and cytarabine in patients with relapsed or refractory hematologic malignancies # Trial design #### **Inclusion Criteria** - Any relapse of AML, MPAL - 2nd or greater relapse ALL # St. Jude Children's Research Hospital Stanford Children's Health Children's Hospital of Michigan Cook Children's Medical Center Duke University Medical Center Phoenix Children's Hospital University of Chicago #### Phase 1 with expansion planned at MTD - Combination therapy - Rolling 6 design - Four dose levels of selinexor (30mg/m², 40mg/m², 55mg/m², 70mg/m²) #### Patient characteristics ### 18 patients enrolled | Disease | Number of patients | | | | |---------|--------------------|--|--|--| | AML | 15 | | | | | MPAL | 2 | | | | | ETP-ALL | 1 | | | | | • | Number of patients | |-------------------------|--------------------| | Refractory | 4 | | 1st Relapse (all early) | 7 | | 2nd Relapse | 7 | | | | | Previous Transplant | 10 | 17 eligible for toxicity evaluation15 eligible for response evaluation | Selinexor
dose | Disease type | |------------------------|---------------------| | 30 mg/m ² | AML | | 30 mg/m ² | AML t(6;12) | | 30 mg/m ² | Secondary AML -7 | | 30 mg/m ² | MPAL | | 40 mg/m ² | AML t(6;9) | | 40 mg/m ² | AML | | 40 mg/m ² | AML-7 | | 55 mg/m ² | AML, M7 | | 55 mg/m ² | ALL -> MPAL t(4;11) | | 55 mg/m ² | AML, M0 | | 55 mg/m ² | AML, t(3;5) | | 55 mg/m ² | AML | | 55 mg/m ² | AML, t(9;11) | | 70 mg/m ² | AML, t(8;21) | | 70 mg/m^2 | AML | | 70 mg/m ² * | AML | | 70 mg/m ² * | AML -> ETP-ALL | | 70 mg/m ² * | AML | ## PK testing shows dose proportional levels | | Day 1 | | | | Day 22 | | | | | | |---------------------------|-----------------|--------------------------|--------------------------|-------------------------------|-------------------------------|-------------------|-----------------|--------------------------|--------------------------|-------------------------------| | Selinexor
Dose (mg/m²) | No. of patients | C _{max} (ng/mL) | T _{max} (hours) | AUC _{0-8h} (ng*h/mL) | AUC ₀₋₄₈ (ng*h/mL) | $t_{1/2}$ (hours) | No. of patients | C _{max} (ng/mL) | T _{max} (hours) | AUC _{0-8h} (ng*h/mL) | | 30 | 4 | 537 ± 281 | 3 ± 1.5 | 2171 ± 618 | 4351 ± 513 | 6 ± 1 | 3 | 414 ± 124 | 4 ± 1 | 2239 ± 494 | | 40 | 3 | 475 ± 157 | 2 ± 3.5 | 2311 ± 934 | 5440 ± 940 | 7 ± 2 | 3 | 420 ± 87 | 4 ± 2 | 1785 ± 376 | | 55 | 4 | 776 ± 200 | 4 ± 0 | 5663 ± 3438 | 9838 ± 2413 | 8 ± 2.5 | 6 | 976 ± 665 | 3 ± 1 | 4627 ± 2484 | | 70 | 5 | 996 ± 224 | 4 ± 1 | 4986 ± 979 | 10564 ± 1638 | 7 ± 1 | 3 | 1188 ± 474 | 2 ± 1 | $7035 \pm NA$ | # PD testing shows on target activity Change in levels of XPO1 mRNA by dose and duration of selinexor exposure # Cerebellar toxicity is a reversible dose limiting toxicity in pediatrics Maximal Tolerated Dose is 55 mg/m² Cerebellar Toxicity – Occurred at 70 mg/m² of selinexor - First Case pain, aphasia, weakness, ataxia - MRI restricted diffusion in cerebellum - Second Case significant ataxia, truncal instability - MRI restricted diffusion in cerebellum #### Hyponatremia - Grade 3 hyponatremia in 12 of 17 evaluable cases - Nadir: range 123-132 mEq/L, median 128.5 mEq/L - Asymptomatic and easily correctable in all cases ## Selinexor can induce differentiation # MRD negative complete responses observed at day 15 and end of course 1 ### Single Agent Response (Day 15) - 2 patients with CR, both MRD negative - 1 was in second relapse, 1 had refractory disease # MRD negative complete responses observed at day 15 and end of course 1 ### Single Agent Response (Day 15) - 2 patients with CR, both MRD negative - 1 was in second relapse, 1 had refractory disease ### Combination Response (End of course 1) - 7/15 with CR or CRi - 5 of responses were MRD negative Can we predict responses? # Summary Selinexor in combination with fludarabine cytarabine: - 1. Cerebellar toxicity is the dose limiting toxicity - 2. PK / PD results show expected concentration, half life and on target effects - MRD negative complete responses were observed and response rate will be further explored in a Phase II study - 4. The search for predictive markers continues... # Acknowledgements Jeffrey Rubnitz, MD Karyopharm Therapeutics Inc., Newton, MA Stanley Pounds, PhD Support Staff – Jeana Cromer, Kathy Jackson, Tad McKeon, Linda Holloway, Heidi Clough Funding - Cancer Center Support (CORE) grant P30 CA021765-30 from the National Institutes of Health - Center of Excellence Grant from the State of Tennessee - American Lebanese Syrian Associated Charities (ALSAC) #### References Etchin J, Sanda T, Mansour MR, et al: KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 161:117-127, 2013. Etchin J, Sun Q, Kentsis A, et al: Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27:66-74, 2013. Kojima K, Kornblau SM, Ruvolo V, et al: Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 121:4166-4174, 2013.