Phase 1 study of safety and tolerability of Selinexor in Asian patients with advanced solid cancers

Heong V1, Koe P1, Pang MY1, Yong WP1, Soo RA1, Chee CE1, Thian YL1, Gopinathan A1, Wong A1, Sundar R1, Ho JS1, Friedlander S2, Landesman Y2, Choe-Juliak C2, McCauley D2, Shacham S2, Lee SC1, Goh BC1, Tan DSP1

(1) National University Hospital, Singapore; (2) Karyopharm Therapeutics, Newton, MA, USA
Disclosures

- Employment or Leadership Position: None
- Consultant/Advisory Role: Steering committee: Pfizer Oncology Forum
- Stock Ownership: None
- Honoraria: Pfizer
- Research Funding: None
- Expert Testimony: None
- Other Remuneration:
 - Study support: Karyopharm Therapeutics Inc. and National Medical Research Council
Selective Inhibitors of Nuclear Export (SINE)

- Tumor Suppressor Proteins (TSPs) exert anti-neoplastic effects in the nucleus.

- Cancer cells can inactivate TSPs via the nuclear export mechanism.

- Exportin 1 (XPO1) is the nuclear exporter of most TSPs.

- Blockade of XPO1 leads to nuclear retention and activation of multiple TSPs and reduced translation of key oncogenes (myc, BCL2/BCL6).

- Selinexor is a covalent, oral selective inhibitor of nuclear export against XPO1.

- First in class Asian patients, phase 1 study.
Study design

• Objectives
 • Primary: Safety, tolerability and Recommended Phase 2 Dose (RP2D) of selinexor in Asian patients with solid tumour and lymphoma

 • Secondary: Pharmacokinetics (PK), pharmacodynamics (PDn), anti-tumor response

• Modified 3+3 design

• Major eligibility criteria:
 • Advanced or metastatic solid tumour and lymphoma
 • ECOG 0-1
 • Documented progression at study entry
 • Stable brain metastases permissible
Treatment schedules

Schedule 1 (S1):
• Twice weekly continuous 28 day cycle at 40 mg/m²
• S1 was stopped due to persistent drug-related adverse events (AEs) – two additional schedules were subsequently explored:

Schedule 2 (S2):
• Once weekly for a 28 day cycle, starting at 50 mg/m²

Schedule 3 (S3):
• Twice weekly for 2 weeks of a 21 day cycle, starting at 40 mg/m²

DLT criteria

• Discontinuation of a patient due to toxicity in cycle 1
• Non Hematologic: Gd ≥3 (nausea/vomiting, diarrhea, fatigue > 5 days, AST/ALT > 7 days, electrolyte abnormalities despite adequate supplements)
• Hematologic: Gd 4 neutropenia ≥ 7 days, febrile neutropenia, Gd 4 thrombocytopenia ≥ 5 days or Gd 3 associated with bleeding
Patient demographics and disease characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N=40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>60 (25 – 76)</td>
</tr>
<tr>
<td>Male /Female</td>
<td>25 /15</td>
</tr>
<tr>
<td>Median prior lines of treatment (range)</td>
<td>4 (1 – 9)</td>
</tr>
<tr>
<td>ECOG performance status, 0/1</td>
<td>22/18</td>
</tr>
</tbody>
</table>

Disease site
- Colorectal: 15
- Lymphoma: 7
- Lung: 4
- Pancreas: 4
- Head & Neck: 3
- Ovarian: 2
- Liver: 2
- Other (esophagus, thymic, RCC, sarcoma): 4
Dose levels, DLT and MTD

Schedule 1: Twice a week continuous schedule

<table>
<thead>
<tr>
<th>Dose Level (mg/m²)</th>
<th>DLT Evaluable Patients (n=6)</th>
<th>Pts with DLT</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6</td>
<td>1</td>
<td>G3 diarrhea CoD due to chronic, persistent drug related toxicity</td>
</tr>
</tbody>
</table>

Schedule 2: Once weekly continuous

<table>
<thead>
<tr>
<th>Dose Level (mg/m²)</th>
<th>DLT Evaluable Patients (n=12)</th>
<th>Pts with DLT</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>6 (+4)</td>
<td>1/6 + (0/4)</td>
<td>G3 fatigue > 5 days</td>
</tr>
</tbody>
</table>

Schedule 3: Twice a week, 2 out of 3 weeks

<table>
<thead>
<tr>
<th>Dose Level (mg/m²)</th>
<th>DLT Evaluable Patients (n=9)</th>
<th>Pts with DLT</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>6 (+4)</td>
<td>1/6 + (1/4)</td>
<td>G3 N/V; G3 fatigue > 5 days</td>
</tr>
<tr>
<td>Preferred term</td>
<td>All (N=40) N (%)</td>
<td>All (N=40) N (%)</td>
<td>Schedule 1 (twice weekly continuous)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>40mg/m² (n=6) 50mg/m² (n=3) 60mg/m² (n=3) 70mg/m² (n=12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ Grade 3 N(%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>33 (82.5)</td>
<td>2 (33.3)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>17 (42.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>25 (62.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>12 (30.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weight Loss</td>
<td>10 (25.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11 (27.5)</td>
<td>1(16.7)</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>11 (27.5)</td>
<td>1(16.7)</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>10 (25)</td>
<td>1(16.7)</td>
<td>0</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>30 (75)</td>
<td>5 (83.3)</td>
<td>0</td>
</tr>
<tr>
<td>Dehydration</td>
<td>3 (7.5)</td>
<td>1(16.7)</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesiemia</td>
<td>11 (27.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>2 (5.0)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Plasma Pharmacokinetics: Mean ± SD plasma selinexor concentration vs. time following oral administration at 40 - 60 mg/m² to Asian patients with solid tumor malignancies, Day 1

Plasma PK:
- Median \(T_{\text{max}} \) values of 1 – 4 hours, followed by a more prolonged distribution phase,
- Dose proportional increases in exposure, and rapid elimination with a mean \(t_{\frac{1}{2}} \) of \(~6\) hours.
- No plasma KPT-330 accumulation following repeated oral administration over a dose range of 40 – 60 mg/m² in a twice-weekly regimen for up to 8 weeks.
Tumour Pharmacodynamics: Reduced proliferation and increased nuclear staining of XPO1 cargos and major tumor suppressor proteins post selinexor treatment.
Clinical activity: best tumour response and duration of best response

Percentage change in size of target lesion from baseline at best response (n=34 evaluable)

- Duration of best response for PR and SD (days)

Percentage change from baseline (%)

- **S1 (twice weekly continuous)**
- **S2 (once weekly continuous)**
- **S3 (twice weekly 2 out of 3 weeks)**

Legend:
- Blue: PR
- Red: SD

* Treatment ongoing
Biomarker – RAS mutants/ cytoplasmic p27

Tumor response for patients with colorectal cancer according to RAS mutation (n=10)

P27 IHC: Pt 037 with CRC, AKT_G37D and KRAS_G12D mutation treated with selinexor

PD with new lesion
* Consent withdrawal

Dual KRAS_G12D and AKT1_G37D mutation

P27 IHC

Pre

Post
Conclusion

• Inhibition of the nuclear-cytoplasmic export pathway is a viable anti-cancer strategy

• XPO1 inhibitor selinexor given weekly or twice weekly is tolerable with manageable toxicities at current escalated dose levels
 - Schedule 2 (weekly): Current recommended phase 2 dose (RP2D) at 70 mg/m2
 - Schedule 3 (2 x weekly/ 3 weeks): Current RP2D at 50 mg/m2
 - 3 times a week at 20 mg/m2 currently being explored
 → Phase 1b expansion

• Proof of mechanism in peripheral blood cells and tumours

• Promising antitumor activity was observed in Asian patients with highly refractory tumours

• → Predictive Biomarkers: ?p27 cytoplasmic expression
Acknowledgements

Hematology-Oncology Unit, National University Hospital

Dr. David Tan
Dr. Chng Wee Joo
Dr. Goh Boon Cher
Dr. Ross Soo
Dr. Andrea Wong
Dr. Chee Cheng Ean
Dr. Yong Wei Peng
Dr. Lee Soo Chin

We would like to thank all patients and their families from the National University Hospital (NUH), Singapore who participated in this study.

Research funding was received from Karyopharm Therapeutics and the National Medical Research Council.

Research Co-ordinators:
Priscillia Koe
Mei Yan Pang
Patrick Marban

NCIS Yong Siew Yoon (YSY) Cancer Drug Development fellowship