A Phase 1 Dose Escalation Study of the Oral Selective Inhibitor of Nuclear Export (SINE) KPT-330 (Selinexor) in Patients (pts) with Relapsed / Refractory Acute Myeloid Leukemia (AML)

Karen Yee¹, Michael Savona², Morten M Sorensen³, Peter Brown³, William Blum⁴, Daniel DeAngelo⁵, Martin Gutierrez⁶, Ramiro Garzon⁴, Andre Schuh¹, Nashat Gabrail⁷, Martha Wadleigh⁵, Jeffrey Lancet⁸, Bijal Shah⁸, Jesus Berdeja⁹, Nina Wagner-Johnston¹⁰, Ian Flinn⁹, Tami Rashal¹¹, Michael Kauffman¹¹, Sharon Shacham¹¹, Richard Stone⁵

- (1) Princess Margaret Cancer Center, Toronto, Canada
- (2) Michael Savona
- (3) Dept. of Oncology, Rigshospitalet, Copenhagen, Denmark
- (4) The Ohio State University, Columbus, OH, USA
- (5) Dana-Farber Cancer Institute, Boston, MA, USA
- (6) Hackensack University Medical Center, Hackensack, NJ, USA
- (7) Gabrail Cancer Center, Canton, OH, USA
- (8) H. Lee Moffitt Cancer Center & Research Institute Inc., Tampa, FL, USA
- (9) Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
- (10) Washington University School of Medicine, St. Louis, MO, USA
- (11) Karyopharm Therapeutics Inc, Natick, MA, USA

Selective Inhibitors of Nuclear Export (SINE)

- Cancer cells can inactivate their Tumor
 Suppressor Proteins (TSPs) via nuclear export
- XPO1 is elevated in Acute Myeloid Leukemia (AML), Chronic Lymphocytic Leukemia (CLL), NHL and other malignancies
- Exportin 1 (XPO1, CRM1) is the exclusive nuclear exporter of most TSPs
- Selinexor (KPT-330) is a covalent, oral
 Selective Inhibitor of Nuclear Export (SINE)
 that blocks XPO1

- Selinexor forces nuclear retention and activation of *multiple* TSPs
- Selinexor reduces proto-oncogene proteins including Flt3, c-Kit,MYC, BCL2/BCL6, MDM2
 Cyclin D and elevates IκB, leading to inhibition of NF-κB
- Selinexor shows robust anti-cancer activity in multiple preclinical models of AML and other hematologic malignancies, largely independent of cytogenetics
- We present summary data from ongoing first-in-human Phase 1 study of oral selinexor in hematological malignancies (NCT01607892)

Phase 1, Open Label, Dose Escalation Study in Patients with Advanced, Hematological Malignancies

Study Design:

- Arm 2 included patients with AML.
- Doses 16, 23, 30, 40, 55 and 70 mg/m²; 10 doses/cycle (2-3 doses/week) or 8 doses/cycle (twice weekly) or 4 doses/cycle (once weekly)
- Modified "3+3" design

Major Eligibility Criteria:

- Patients with AML with no available standard treatments
- ECOG 0-1
- Documented progression at study entry

DLT Definition

- ≥ 3 missed doses in 28 days at target dose
- Discontinuation of a patient due to a toxicity in Cycle 1

Non Hematologic:

- Grade ≥3 excluding nausea/vomiting or electrolyte imbalances amenable to supportive care and AST/ALT lasting less than 7 days
- Grade ≥3 fatigue lasting ≥5 days while taking supportive care

ASCO 50^{°°} ANNUAL SCIENCE & COLUMN

Selinexor Phase 1 Study in AML: Patient Demographics

Characteristic	N=65	Therapy Line for Disease			
Mean Age (range)	67 (24 – 89)	2nd Line AML	15 (23%)		
Male / Female	34 Males : 31 Females				
Mean Prior Lines of Treatment (range)	3 (1 – 7)	3rd Line AML	13 (20%)		
		> 3rd Line AML	28 (43%)		
ECOG performance status, 0/1	18 / 47	Unknown	9 (14%)		

AML Cytogenetic Risk						
Favorable	10 (15%)					
Intermediate	28 (43%)					
Adverse	23 (35%)					
Unknown	4 (6%)					

Summary: Patients with AML enrolled in KCP-330-001 have heavily pretreated AML with disease that is progressing on study entry. The majority of patients have intermediate or poor cytogenetic risk >50% are over 67 years old.

Selinexor Phase 1 Study: Safety

Selinexor Adverse Events (AEs, Overall)

- No DLTs were observed at any dose (16 70mg/m² administered 2-3 times weekly)
- The majority of adverse events are reversible Grade 1 and 2, primarily anorexia, nausea and fatigue.
- AEs are more common in Cycle 1, and decline in Cycles 2-3 with supportive care and some dose reductions.
- AEs did not show a clear dose response on incidence/severity, likely due to the implementation of required supportive care at higher doses, including appetite stimulants and anti-nausea agents.
- Cumulative toxicities are uncommon, and major organ dysfunction is rare.

Recommended Phase 2/3 Dose of Oral Selinexor for AML is 55 mg/m² twice weekly

Selinexor Phase 1 Study: Efficacy and Conclusions

Best Responses in Patients with AML as 13-May-2014										
N	DCR	ORR	CR	CR(i)	PR	MLFS	SD	PD	NE	
63	31	10	5	2	1	2	21	16	16	
%	49%	16%	8%	3%	2%	3%	33%	25%	25%	

Selinexor Induces Blast Count Reductions

 Selinexor (KPT-330) is a covalent, oral SINE XPO1 antagonist that forces nuclear restoration and reactivation of TSP and reduces proto-oncogenes leading to the selective apoptosis of AML cells.

- Common AEs are reversible nausea, anorexia and fatigue; extended dosing feasible with appetite stimulants and anti-nausea agents
- Objective Responses and reduction in BM blasts were observed in heavily pre-treated patients with AML
- Randomized Study of Selinexor 55mg/m² PO BIW vs. Physician's Choice 2nd line elderly AML has begun
- Combination studies have begun or are planned.

BM Blast cells were evaluated at screening and at the end of each cycle * Excludes 14 patients who withdrew consent & 18 patients who clinically progressed before post treatment bone marrow biopsy

