Asfar S. Azmi1, Amro Aboukameel1, Irfana Muqbil1, Yiwei Li1, William Senapedis2, Erkan Baloglu2, Yosef Landesman2, Michael Kauffman2, Sharon Shacham2, Ayad Al-Katib3, Ramzi M. Mohammad1

1Wayne State Univ., Detroit, MI; 2St. John Providence Medical College, MI, 3Karyopharm Therapeutics, Newton, MA

ABSTRACT

The p21-activated kinase 4 (PAK4) is a key downstream effector of the Rho GTPase family and is over-expressed in many different cancer types1. PAK4, by virtue of its ability to engage multiple ligands, regulates a repertoire of signaling pathways. A survey of non-Hodgkin’s lymphoma (NHL) cell lines shows that there is an increase in PAK4 mRNA and protein expression not in normal peripheral lymphocytes (PBL). PAK4 RNA interference suppresses lymphoma cell proliferation indicating to a novel role for PAK4 in promoting NHL cell growth. Here we examined the impact of the dual PAK4 and NAMPT allosteric modulators (KPT-8752 and KPT-9274) on NHL proliferation both in vitro and in vivo.

METHODS

WSU-FSCCL (representing follicular small cell cleaved lymphoma) and WSU-DLCL2 (diffused large B-cell lymphoma) were exposed to increasing concentrations of different compound analogs in the presence or absence of CHOP (used at IC25) for 72 hrs. Following combination treatment viability was evaluated using Trypan Blue and apoptosis was analyzed using 7AAD. Molecular changes were evaluated using immunoblotting and RT-PCR. The efficacy of these compounds were evaluated in sub-cutaneous and disseminated xenograft models of NHL.

RESULTS

This is the first study demonstrating a role for PAK4 in diffused large B-cell and follicular small cell cleaved NHL.

Our data shows that inhibition of PAK4 could become a viable therapy for NHL either alone or in combination with CHOP

Reference: Aboukameel A et al. Mol Cancer Ther. 2017 ;16(1):76-87

Funding: Work in the lab of ASA is supported by NIH R21CA188818-01A1

Figure 1. KPT-9274 suppress growth and induce apoptosis in NHL cell lines. [A and B] WSU-DLCL2 and WSU-FSCCL were seeded in duplicate in 24 well plates at 2x10^5 cells/ml, and were exposed to different concentrations of KPT-9274. Cell viability was plotted against concentration after being counted daily for 72 hours using Trypan Blue. [C and D] Apoptosis analysis using 7AAD assay.

Figure 2. KPT-9274 enhances the inhibitory effect of CHOP. WSU-FSCCL and WSU-FSCCL were seeded in duplicate in 24 well plates at 2x10^5 cell/ml. Viability was evaluated using Trypan blue exclusion test. [A and B] CHOP used at IC50; [C and D] CHOP used at IC25.

Figure 3. KPT-8752 and KPT-9274 increase host life span of NHL brain- disseminated model. WSU-FSCCL cells was inoculated in the tail vein of mice at a density of 10^5 cells per mouse. One week later, eight mice each were treated with vehicle or as indicated. (KPT-9274 study still ongoing).

Figure 4. KPT-9274 significantly delayed NHL tumor growth. (A and B) WSU-DLCL2 tumors were implanted subcutaneously into the flank of 12 female ICR-SCID mice. Ten days post implantation, mice were divided into two groups. KPT-9274 was administered to 6 mice at a dose of 150 mg/kg orally daily for five days per week for four weeks. Tumor and Body weight was recorded 3 days per week. Three days post treatment, protein and RNA was isolated from 4 tumors (data for three shown here) in each group and subjected to western blot [C] and RT-PCR analysis [D-G].