

Nuclear export inhibitor selinexor (KPT-330) demonstrates anti-tumor efficacy alone and in combination with chemotherapy in multiple breast cancer models

Natalia Paez-Arango, Kurt Evans, Ming Zhao, Erkan Yuca, Stephen Scott, Charissa Kim, Ana Maria Gonzalez-Angulo, Aung Naing, Funda Meric-Bernstam The University of Texas MD Anderson Cancer Center, Houston, Texas, Departments of Surgical Oncology (NPA, FMB) Investigational cancer therapeutics (FMB, KE, MZ, EY, SS, AN)

Background

The nuclear exporter XPO1 (Exportin1 or CRM1), mediates the transport of multiple cancer-related proteins, including several tumor suppressors¹. For this reason, XPO1 is being pursued as a promising target for cancer therapy options. Selinexor (KPT-330), a selective inhibitor of nuclear export, is an oral agent that has been shown to inhibit XPO1² and is currently in phase 2 trials for hematologic and solid tumors. We sought to determine the antitumor effect of selinexor in breast cancer cells in vitro and in vivo

Methods

We studied the effects of selinexor in vitro using cell proliferation inhibitory assays; maximal the halt concentration (IC50) was calculated using isobologram curves after 3 days of treatment. We also tested the effects in combination with chemotherapy and calculated the combination index by the method of Chou and Talalay³. In vivo efficacy was tested in triple negative breast cancer (TNBC) patient derived xenografts (PDXs) with varying levels of paclitaxel sensitivity, as single agent and in combination therapy. T/C ratio was calculated using the formula: [(median tumor volume of treated group)/(median tumor volume of control group) x 100]⁴

Fig 2. Effects of selinexor in combination with standard chemotherapy in vitro. 4 different TNBC cell lines were treated with selinexor in combination with paclitaxel doxorubicin, gemcitabine, carboplatin and eribulin. Cell growth was measured after 72 hours of treatment using SRB assay and the combination index (CI) was then calculated using the method of Chou and Talalay, a CI value <1 indicates synergism, equal to 1 indicates addition and a CI significantly greater than 1 indicates antagonism.

Results

Fig 5. Selinexor has in vivo efficacy in TNBC PDX models. A.Mice bearing BCX 6, BCX10, BCX 11, BCX22 and BCX51 TNBC patient derived xenografts were treated with vehicle or Selinexor 12.5mg/kg twice a week . A. Data is presented as mean \pm SEM of relative tumor volume. The tumor volumes at the conclusion of experiment were compared to vehicle and data was analyzed by two-way ANOVA to determine statistical significance. **B.** T/C ratios calculated using the formula: [(median tumor volume of treated group)/(median tumor volume of control group)] × 100. Activity defined as % T/C ratio <40%

Fig 3. Selinexor in combination with paclitaxel has greater efficacy than compared to either agent alone. A. SUM-159 cells were trypsinized, counted and plated at a density of 2 $\times 10^3$ cells/60 mm plates in triplicate for each treatment group. Cells were treated for 2 weeks with vehicle. selinexor(50nM), paclitaxel(0.5nM) or eribulin (1nM) or in combination of selinexor with paclitaxel and selinexor with eribulin colonies were then fixed and stained with crystal violet. **B.** Percent Surface area was calculated using NIH Image J v.1.48 software. Data are presented as mean \pm SEM (**P*<0.005 vs. control ***P*=0.0002 combination paclitaxel vs selinexor alone, P=0.001 combination eribulin vs selinexor alone).

Abstract # 3075

THE UNIVERSITY OF TEXAS

MDAnderson

Cancer Center

Fig 6. Selinexor has greater antitumor efficacy in vivo in combination with standard chemotherapy. Mice bearing three different TNBC patient derived xenografts were treated with vehicle, selinexor 12.5mg/kg twice a week for BCX10 and once weekly for BCX 6 and 11, paclitaxel 10mg/kg weekly, eribulin 1mg/kg weekly, carboplatin 75mg/kg weekly and in combination of selinexor with each chemotherapy agent. Data is presented as mean \pm SEM. The tumor volumes at the conclusion of experiment were compared to vehicle and the data was analyzed by two-way ANOVA to determine statistical significance (* P<0.001 vs. control).

Conclusion

Collectively these findings strongly suggest that selinexor is a promising therapeutic option for breast cancer.

References

- 1. Gravina, G. L., et al. (2014). "Nucleo-cytoplasmic transport as a therapeutic target of cancer." J Hematol Oncol 7: 85.
- 2. Walker, C. J., et al. (2013). "Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias." Blood 122(17): 3034-3044
- 3. Chou, T. C. and P. Talalay (1984). "Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors." Adv Enzyme Regul 22: 27-55.
- Rad, F. H., et al. (2007). "VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases." Proc Natl Acad Sci U S A 104(8): 2837-2842.
- McAuliffe, P. F., et al. (2015). "Ability to Generate Patient-Derived Breast Cancer Xenografts Is Enhanced in Chemoresistant Disease and Predicts Poor Patient Outcomes." PLoS One 10(9): e0136851.

Funding

This work was supported by National Institutes of Health T32 CA009599 (NPA, FMB), Susan G. Komen Foundation for the Cure grant SAC10006 (FMB), MD Anderson Women's Cancers Moonshot Program (KE, FMB), the Nellie B. Connally Breast Cancer Research Endowment (AA, KE, EY, SS, FMB), the Barr funds, and the MD Anderson Cancer Center support grant (P30 CA016672