Nuclear Export Inhibitor KPT-8602 Is Highly Active Against Leukemic Blasts and Leukemia-Initiating Cells in Patient-Derived Xenograft Models of AML

Julia Etchin, Alla Berezovskaya, Amy Saur Conway, Weihsu C. Chen, Erkan Baloglu, Yosef Landesman, William Senapedis, Joel Ellis, Dilara McCauley, Richard Stone, Ilene Galinsky, Daniel J. DeAngelo, Michael Kauffman, Sharon Shacham, Jean C.Y. Wang, A. Thomas Look

Nuclear Exporter CRM1/XPO1

Cytoplasm

Nucleus

- major protein nuclear export receptor
- exports ~ 220 macromolecules that contain leucine-rich nuclear export signals (NES)
- mediates export of RNA substrates (e.g. rRNAs, viral mRNAs, cellular mRNAs)
- transports a variety of cancer proteins, including tumor suppressors, transcription factors, and cell cycle regulators

Overview of the XPO1-Mediated Pathway of Nuclear Export

Novel XPO1 inhibitors: KPT-SINE

 Developed based on the crystal structure of CRM1/XPO1

(target Cys⁵²⁸ in the cargo-binding groove)

• Orally bioavailable

- Selinexor (KPT-330) is in clinical phase I/II trials in adults and children with AML – Preliminary results show that selinexor alone or in combination is active at inducing remission in patients with relapsed or refractory AML
- Next generation SINE compound, KPT-8602, has over 30 times lower brain penetration than selinexor
- KPT-8602 is a more reversible inhibitor of XPO1 as compared to KPT-330

Experimental scheme to determine the activity of KPT-8602 against primary bulk cells

KPT-8602 is Highly Active against Bulk AML Cells in PDX Models of Patient AML

KPT-8602 greatly reduces the number of bulk AML cells in PDX models of high-risk AML; 2 mice demonstrated no detectable AML cells in the bone marrow after 4 weeks of treatment

Experimental scheme: Response of LICs to KPT-8602 treatment

Compare LIC frequencies between experimental groups

KPT-8602 is Highly Active against AML LICs in PDX models

AML-CN	freq.	Fold Reduction in LIC Frequency	
		(compared to LIC frequency of Vehicle)	
Vehicle	1/1155	1	KPT-8602 induced ~ 437 fold reduction in LIC
Selinexor	1/128923	🜵 111-fold	requency in the surviving Awil cell population
KPT-8602	1/504215	🚽 437-fold	
			1
PDX model	LIC	Fold Reduction in LIC	
	neq.	(compared to LIC	
		frequency of Vehicle)	KPT-8602 induced ~ 150 fold reduction in LIC
Vehicle	1/4092	1	frequency
Selinexor	<1/771218	↓ >150-fold	
KPT-8602	<1/681463		
			-
PDX model	LIC	Fold Reduction in LIC	
AML-CK	freq.	Frequency	
		frequency of Vehicle)	
Vehicle	1/311	1	KPT-8602 induced ~ 507 fold reduction in LIC
Selinexor	1/280	🔸 0.9-fold	frequency
KPT-8602	1/157733	↓ 507-fold	

Cytotoxic chemotherapy targets AML bulk cells, but leaves LIC that cause relapse

KPT-8602 targets AML bulk and Leukemia Initiating Cells (LICs) with high efficiency

The effects of KPT-8602 on normal human leukocytes and hematopoietic stem and progenitor cells

KPT-8602, like KPT-330, shows minimal toxicity against normal HSPCs

The effects of KPT-8602 on normal HSCs

Normal human CD34+ Grafts	<u>Secondary Transplant</u> Normal HSC frequency	Fold Reduction in Normal HSC Frequency (compared to Frequency of Vehicle)
Vehicle	1/7389	1
Selinexor	1/20496	<mark>↓</mark> 2.77
KPT-8602	1/6264	↓ 0.85

KPT-8602, like KPT-330, shows minimal toxicity against normal HSCs

The effects of KPT-8602 on Survival of Complex Karyotype AML PDX Mice

Moribund AML cells detected

The effects of KPT-8602 on Survival of MDS/AML PDX Mice

Conclusions

- KPT-8602 is highly active against bulk AML cells and LICs, but spares normal hematopoietic stem and progenitor cells
- Both selinexor and KPT-8602 can completely eradicate leukemia cells in one of the two PDX models
- KPT-8602 can be given daily to mice and has better tolerability compared to selinexor
- Preliminary toxicology studies in rats and monkeys suggest that KPT-8602 has a substantially better tolerability profile, with reduced CNS-mediated side effects of anorexia and weight loss compared to selinexor.
- KPT-8602 will enter Phase I trials in early 2016 and based on our studies may prove useful to help eradicate LIC that may remain after induction chemotherapy