

Targeting nuclear export for triple-negative breast cancer therapy

Stefanie Chan¹, Fernanda Langellotto¹, Nicholas Pagani¹ & Fabio Petrocca^{1,2} ¹Department of Surgery and ²Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA

Introduction

Triple-negative breast cancers (TNBC) are exceedingly heterogeneous in genetic mutations

???????????????????????????????????????	<u>;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</u>	() () () () () () () () () () () () () (\$\$\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$??????????????????????????????????????
TP53	77.7%	0.000	0.000	0.000
PIK3CA	12.6%		0.000	0.001
FRG1	6.8%	0.012		
PTEN	5.8%		0.000	0.000
FBXW7	4.9%		0.013	0.045
OTUD7A	3.9%			0.047
CARD11	3.9%			0.047
CDH1	2.9%		0.030	0.047
FRMD7	2.9%			0.047
HIST1H3B	1.9%			0.047
RHOA	1.9%			0.047
EZH2	1.9%			0.047
CBFB	1.0%			0.047

Within the TCGA database 103 out of ~ 1,000 breast primary tumors are TNBC.

We employed MutSig to identify significant mutations in the TNBC subset.

Beside p53 and a handful of other genes, most genetic lesions were exceedingly

Progenitor Myoepithelia

TNBC are commonly arrested in a progenitor-like epigenetic state

Despite genetic diversity, most TNBCs (classified as basal-like) resemble normal mammary progenitors that can be efficiently propagated in chemically-defined conditions in vitro.

A genome-wide siRNA lethality screen for selective dependencies linked to a progenitor-like state

Identify BPLER dependency genes that are not cytotoxic for HMLER

1. TNE curre	BC ntly
??	
Molecu	ılar tra
SLC4A	5 MFSD
SLC24A3 ^{SL} TNP	.C47A1 COF 01
Inflammation	CLTC
KIR2DL4 NOSTRIN	CDK17
HRH2 NLRP4	
C10orf11	BUI CASC5
NME3	HAUS1
D	HA DLGAP5
G1/S transition	CCNA2
LIN9	LIN37
RB1C	C1
	N
F 7	DNAJC1
MANEAL	KIAA114
Figure 1: (A) Drot	oin nr
cell viability after k	nockd
each network, rep	resent
2. The	nu
viv	Ό.
?? ??	
$\widehat{\underline{0}}^{0}$	
ehic (ehic	ı.
viab to v	н
ltive 10 -	
D 0 (rela	
, 147	CC7 B43

Figure 2: (A) Cell viability of TNBC cell lines after treatment with selinexor (0.5 uM) for 48 hr in vitro. Luminal T47D and MCF7 cells were used as control. (B) mRNA expression of nuclear envelope genes significantly correlated with exceptional TNBC sensitivity to selinexor in vitro, as determined by RNA-seq. (C) Volume of preestablished xenograft tumors from HCC1187 TNBC cell line upon treatment with selinexor (10 mg/kg) or vehicle twice a week by oral gavage. Arrows indicate treatment days.

splicing and the ubiquitin-proteasome system.

